
Breaking the Top-k Barrier of Hidden Web
Databases∗

Saravanan Thirumuruganathan‡, Nan Zhang††, Gautam Das‡,†

‡University of Texas at Arlington ††George Washington University †Qatar Computing Research Institute
‡{saravanan.thirumuruganathan@mavs,gdas@cse}.uta.edu,††nzhang10@gwu.edu, †gdas@qf.org.qa

Abstract—A large number of web databases are only accessible
through proprietary form-like interfaces which require users to
query the system by entering desired values for a few attributes. A
key restriction enforced by such an interface is the top-k output
constraint - i.e., when there are a large number of matching
tuples, only a few (top-k) of them are preferentially selected
and returned by the website, often according to a proprietary
ranking function. Since most web database owners set k to be a
small value, the top-k output constraint prevents many interesting
third-party (e.g., mashup) services from being developed over
real-world web databases. In this paper we consider the novel
problem of “digging deeper” into such web databases. Our main
contribution is the meta-algorithm GetNext that can retrieve the
next ranked tuple from the hidden web database using only
the restrictive interface of a web database without any prior
knowledge of its ranking function. This algorithm can then
be called iteratively to retrieve as many top ranked tuples as
necessary. We develop principled and efficient algorithms that
are based on generating and executing multiple reformulated
queries and inferring the next ranked tuple from their returned
results. We provide theoretical analysis of our algorithms, as well
as extensive experimental results over synthetic and real-world
databases that illustrate the effectiveness of our techniques.

I. INTRODUCTION

A. Problem Motivation

Many web databases are “hidden” behind (i.e., only ac-
cessible via) a restrictive form-like interface which allows a
user to form a search query by specifying the desired values
for a few attributes; and the system responds by returning a
small number of tuples matching the search query. Almost
all such interfaces enforce the top-k constraint - i.e., when
more than k tuples (where k is typically a predetermined small
constant) match the user-specified query, only k of them are
preferentially selected according to a (often proprietary) rank-
ing function and returned to the user. For example, American
Airline’s (AA) flight search-by-schedule1 has a default value
of k = 10. Similarly, Amazon’s best sellers list 2 for any
category only displays the top-100 products.

How to properly set the value of k is an interesting design
challenge for a web database owner. On one hand, the owner

*The work of Saravanan Thirumuruganathan and Gautam Das is partially
supported by NSF grants 0812601, 0915834, 1018865, a NHARP grant
from the Texas Higher Education Coordinating Board and grants from
Microsoft Research and Nokia Research. The work of Nan Zhang is partially
supported by NSF grants 0852674, 0915834, 1117297 and a GWU Research
Enhancement Fund.

1http://www.aa.com/reservation/searchFlightsSubmit.do By default k = 10.
A user may configure k to be as large as 50. No page down is allowed.

2http://www.amazon.com/Best-Sellers/zgbs

may prefer a small k to (1) speed up query processing and
shorten the returned webpage, and/or (2) thwart web/tuple
scraping. However, in order to accommodate the needs of
website users, the value of k should not be too small. Given
these two conflicting goals, in practice k is often set to the
minimum necessary value, according to the database owner’s
belief, which provides the user with “enough” choices within
the returned tuples. While such a strategy might suffice the
simplest use-cases, it often cannot satisfy users with specific
needs and also prevents many interesting third-party services
from being developed over web databases - e.g.,
• Consider a third-party service which enables a user to

filter query results according to attributes that cannot be
specified in the original form-like interface. For example,
American Airline’s (AA) flight search-by-schedule1, a
top-10 interface, does not allow a user to specify filtering
conditions such as finding the top-10 flights with in-flight
wifi. If a third-party service wants to provide such a
feature, it must somehow “bypass” the top-k constraint
because otherwise one might not be able to find enough
(or any) wifi-equipped flights from the top-10 results.

• Consider a web aggregator or a web mashup which joins
tuples from multiple hidden web databases and returns
the joined results - e.g., a mashup joining Orbitz.com
(a hotel booking website) with Tripadvisor.com (a hotel
review website) to return the top-k cheapest hotels that
have an average review of at least 4 stars. Once again,
such a mashup must somehow break the top-k constraint
because not enough matching tuples may be discovered
from the mere k tuples returned by each web database.

To enable these third-party services and many other in-
teresting applications (e.g., data analytics) that are currently
disabled/handicapped by the top-k constraint, a trivial so-
lution is for the third-party service provider to negotiate a
private agreement with each web database owner in order to
establish data-access channels beyond the top-k web interface.
Nonetheless, such negotiations are difficult even between large
organizations3 due to revenue sharing, security and myriad of
other thorny issues - thus making the solution not scalable to
a large number of web databases. As such, our focus in this
paper is to develop automated third-party algorithms that only
use the public interfaces of web databases without requiring
any additional cooperation from the database owners.

3http://online.wsj.com/article/SB121755825030403467.html

Another seemingly straightforward solution to the above
problems is crawling - i.e., the retrieval of all tuples in a
hidden web database by issuing multiple queries through its
web interface [1], [2]. Once all tuples are downloaded, they
can be treated as a local database to support all of the above
applications. Nonetheless, a key pitfall of this solution is its
prohibitively high query cost (i.e., the numerous search queries
one needs to crawl all tuples from a web database) - which
can be simply infeasible for real-world web databases which
often impose a per user/IP limit on number of queries one can
issue over a given time frame (e.g., Google Search API allows
only 100 free queries per user per day).

B. A Novel Problem: Breaking the Top-k Barrier

Given the pitfalls of crawling, we propose to study in this
paper a novel problem of digging deeper into a web database
to retrieve (more than k) top-ranked tuples which satisfy a
user-specified search query - and thereby “breaking” the top-
k barrier. Specifically, we consider the following fundamental
operator:

GETNEXT: Given the top-h tuples (h ≥ k) satisfying
a user-specified query, retrieve the next-highest-ranked
(i.e., No.(h + 1)) tuple from the hidden web database
by issuing search queries through its public interface,
without any knowledge of its ranking function.

One can see that, by calling GETNEXT iteratively, it is
possible to retrieve as many top-ranked tuples as necessary
for a user-specified query - thereby enabling both sample
applications discussed above without the need of crawling
all tuples from the database. Because of the query-number
limitations enforced by web databases, an important objective
in the design of GETNEXT is to maintain a small query cost
- a goal shared by most existing studies on exploring hidden
web databases (e.g., [3]–[5]).

It is important to understand that the most critical efficiency
measure here is the number of queries the algorithm requires
to issue through the web interface of the hidden database,
not the actual processing time of issued queries and/or the
local processing overhead. To understand why, note that our
objective is to build a scalable third-party service that breaks
the top-k barrier for a large number of users. A key obstacle
for building such a service, as mentioned earlier, is the query
allowance enforced by the hidden database owner - which
completely shuts down our access to the database if we issue
more queries than a pre-determined threshold. Compared with
this hard cutoff, the variance of local processing overhead
and/or query processing time is relatively negligible - espe-
cially given the fact that most well-designed hidden databases
return query answers within a short period of time.

C. Outline of Technical Results

To design GETNEXT, the technical challenge may have sub-
tle differences across various web databases, mainly because
of the different ranking functions being used. At one extreme,
some websites allow users to choose their own ranking func-
tion (from a predetermined set) - e.g., airlines websites allow

users to sort by attributes such as by price, departure time, etc.
At the other extreme, a website might feature a complex and
proprietary query-specific ranking function (e.g., “relevance”
of a tuple to a query) that may never be deterministically
inferred from other query answers. Other possible ranking
functions include a global order that is nevertheless hidden
from the input interface - e.g., Amazon uses popularity as the
default ranking function but does not allow it to be specified
in a search query. For most of the paper, we focus on the
case where the ranking function is a query-independent global
order of all tuples. The implications of other ranking-function
variations on our solutions are discussed separately.

There are two key components of our proposed solution to
GETNEXT: candidate generation and candidate testing.

Candidate Generation: Given the top-h tuples, the candidate
generation step aims to identify a complete yet small set
of tuples that can potentially have the rank h + 1. A key
observation here is that the problem is equivalent to finding
a small set of queries, each of which matches fewer than
k tuples in the top-h, while together cover the rest of the
database. One can see that, since each query in the set returns
at least one non-top-h tuples, the No.(h + 1) tuple must
be returned by at least one query in the set. Based on this
key observation, we propose a tuple-chain-construction based
technique which further reduces the query cost required for
candidate generation significantly.

Candidate Testing: Since the task is now reduced to testing
which candidate is the No.(h + 1) tuple, the key enabling
question becomes how to perform pairwise rank-comparison
between two tuples. Interestingly, for certain pairs of tuples,
the comparison may be done with a single query to the hidden
database. Specifically, consider issuing the most specific query
that matches both tuples. If both are returned, then the result
reveals their order. If only one is returned, then it must
have a higher rank. The challenge, however, is in the worst-
case scenario where neither is returned. In the paper, we
start by resolving this scenario with a baseline approach that
requires 2m queries, where m is the number of attributes.
Then, we propose two ideas - one connects with the well-
studied problem of minimal infrequent itemsets mining [6],
and the other is a heuristic of query-result inference - which
significantly reduce the query cost for candidate testing.

D. Summary of Contributions

In summary, the main contributions of this paper are:
• We introduce the novel problem of breaking the top-k

barrier of a hidden web database to retrieve top ranked
tuples that match a user query. We consider several vari-
ants of the problem, and study necessary and sufficient
conditions under which this problem can be solved.

• We propose BEYOND-h-GETNEXT and ORDERED-
GETNEXT, two algorithms that iteratively uses the two
fundamental operations, candidate generation and can-
didate testing, to retrieve the next-highest-ranked tuple.
While BEYOND-h-GETNEXT guarantees the correct

retrieval of next ranked tuple4, ORDERED-GETNEXT
further uses an effective heuristic of query-result infer-
ence to significantly reduce the query cost in practice
without sacrificing correctness.

• Our contributions also include a careful theoretical
analysis of BEYOND-h-GETNEXT and ORDERED-
GETNEXT, as well as a through experimental evaluation
over both synthetic datasets and real-world websites.

The rest of the paper is organized as follows. In §2,
we discuss preliminaries - e.g., the models of hidden web
databases and their ranking functions. §3 defines the problem
of breaking the top-k barrier and outlines our proposed solu-
tion that uses GETNEXT. §4 and §5 detail the two main parts
of our algorithm, candidate generation and candidate testing,
respectively. In §6, we discuss extensions to the algorithms to
handle special cases. §7 describes a detailed set of experiments
over real-world datasets. §8 discusses related work, followed
by the conclusion in §9.

II. PRELIMINARIES

In this section, we introduce a model for hidden databases
and describe the different types of ranking functions used
commonly in hidden databases.

A. Model of Hidden Databases

Consider a hidden database D with n tuples and m input
attributes A1, A2, . . . , Am. Given a tuple t and attribute Ai, let
t[Ai] be the value of Ai in t. Let Dom(Ai) be the domain of
Ai. For the purpose of this paper, we restrict our attention to
categorical attributes and assume the appropriate discretization
of numeric ones. We also consider all tuples distinct and
without null values. Let f(.) be the ranking function which
takes a tuple and a query as input and outputs an integer
between 1 and n. Without loss of generality, we assume the
output of f(.) to be unique for each tuple.

A user can query the system by specifying the desired values
for a subset of A1, . . . , Am. Thus, a user query q is of the form
SELECT * FROM D WHERE Ai1 = vi1& . . .&Ais = vis ,
where {i1, . . . , is} ⊆ [1,m]. and vij ∈ Dom(Aij). The set of
tuples matching query q is denoted as Sel(q). If |Sel(q)| > k,
an overflow occurs and only the top-k results are returned,
along an overflow flag indicating that more tuples matching the
query cannot be returned. If |Sel(q)| = 0, then an underflow
occurs as no tuples match the query. Otherwise, i.e., when
|Sel(q)| ∈ [1, k], we say that q is valid. For the purpose of
this paper, we make the realistic assumption that k > 1.

For the purpose of our paper, we assume that the interface
only displays the top-k results and does not allow users
to extract additional results by scrolling through the results.
The only way to get additional results is to reformulate the
input query. This is a reasonable assumption as many real
world hidden web databases such as Yahoo! Autos limit the
maximum number of page turns a user can perform.

4if such an order can be uniquely determined from the top-k interface.

TABLE I
INPUT TABLE, D

A1 A2 A3 A4 A5

t1 0 0 0 0 1
t2 0 0 0 1 1
t3 0 0 1 0 1
t4 0 1 1 1 1
t5 1 1 1 0 1
t6 1 1 1 1 1
t7 0 0 0 0 0

B. Model of Ranking Function

There are two broad categories of ranking functions: static
and query-dependent.
• A ranking function f(.) is static if for a given tuple
t, f(q, t) is constant for all queries q - i.e., the rank
of a tuple is independent of the query being issued.
An example in practice is the “sort by price” used by
Yahoo! Autos. Note that the input tuple may feature
not only A1, . . . , Am but also the non-input-specifiable
attributes (e.g., “popularity” as discussed in §1).

• A ranking function is query-dependent if, for a given t,
f(q, t) varies for different queries q. An example of such
a ranking function occurs in a fuzzy-matching scenario
where all tuples are ordered according to the number of
attribute matches between the query and each tuple.

As discussed in §1, we focus on static ranking functions in
this paper. The reason for doing so is simple - if the ranking
function is query dependent, no mechanism can be used to
fetch the next ranked tuple. To understand why, note that in
order to get tuples beyond top-k, it is necessary to reformulate
the query. But this has the side effect of arbitrarily changing
the ranking of tuples. Hence, with a query-dependent ranking
function, no mechanism can guarantee the discovery of tuples
with rank greater than k for a given query.

For the purpose of this paper, we conservatively assume
that the ranking function is unbeknown to our algorithm. If
the ranking function is known and is based on the attributes
returned by the hidden web interface (such as sort by price),
it is possible to leverage this information to design algorithms
with significantly less query cost. We further discuss this
variant in §5. In addition, we assume that it is possible to infer
a unique global order of the top-ranked tuples to be extracted
from the web interface. If such an order cannot be inferred
from the interface, one of the possible partial orders would be
returned, as we shall explain in §6.

Running Example: Table I shows a simple table which
we shall use as running example throughout this paper.
There are m = 5 Boolean attributes and n = 7 tuples
which are ranked in the order given in the table. i.e., t1
is the highest ranked tuple.

III. OVERVIEW OF GETNEXT

In this section, we first discuss the technical challenges of
GETNEXT, and then outline the structure of our proposed two-

step solution - the details of each step shall then be developed
in the next two sections, respectively.

A. Technical Challenges

To illustrate the main technical challenges, we consider
a fundamental question: Given two tuples t and t′, how
can we determine which one ranks higher? We start with a
straightforward comparison - i.e., when t and t′ match the
same query q which returns at least one of the two tuples:

• if q returns t but not t′, then t is ranked higher,
• if q returns t′ but not t, then t′ is ranked higher, or
• if q returns both, then we can make the comparison based

on the returned order.

In this case, we call two tuples directly comparable, with the
higher-ranked tuple directly dominating the other one - i.e.,

Definition 1: [Domination] A tuple t is said to directly
dominate another tuple t′, i.e., t � t′, if and only if t and t′

are directly comparable and t ranks higher than t′.
A tuple can dominate another tuple directly or indirectly.

Suppose tuple t � u and u � v. Even if t and v are not
directly comparable, we can infer that t indirectly dominates
v. By default, we use the term domination to refer to direct
domination.

For example, consider the running example with a top-2
interface. We can observe that t1 and t3 are directly com-
parable using the query q1: SELECT * FROM D WHERE
A1 = 0 AND A2 = 0 AND A4 = 0 AND A5 = 1 with
t1 ranked higher than t3. Similarly, tuples t2 and t3 are
directly comparable using the query q2: SELECT * FROM
D WHERE A1 = 0 AND A2 = 0 AND A5 = 1. The result
includes t2 but not t3 - i.e., t2 ranks higher.

A key observation here is that if two tuples are directly
comparable, then we need only one query to determine
their domination relationship: the most specific query which
matches both tuples - i.e., the query which contains one
predicate for each attribute on which both tuples share the
same value. To understand why, note that if this query cannot
return at least one of the two tuples, then no other query can -
i.e., the two tuples are not directly comparable. For the running
example, both q1 and q2 shown above are the most specific
queries matching the two corresponding tuples.

While the possibility of direct comparison shows promises
for ranking tuples in the database, it also illustrates the key
technical challenge for GETNEXT: not every pair of tuples are
directly comparable with each other - e.g., neither t6 nor t7
in the running example can be returned by the most specific
query that matches both of them (i.e., SELECT *).

In this case, the comparison of the two tuples requires one to
identify a “bridge” of tuples between them - e.g., t � tx � t′
for comparing t with t′. The problem, however, is it is unclear
how one can find the bridging tuples without actually crawling
all tuples from the database and incurring a prohibitively high
query cost. In the next subsection, we outline the structure of
our proposed solution to address this challenge.

B. Outline of Our Proposed Solution

Our proposed solution for GETNEXT is a two-step process:
• Candidate Generation: In this step, we identify a small

set of candidate tuples which are guaranteed to contain
the No. h+1 tuple. If the output set has a size of 1, then
we can directly output the No. h + 1 tuple. Otherwise,
we call the following candidate testing step. §4 describes
our design for candidate generation.

• Candidate Testing: In this step, we take the set of
candidate tuples as input and compare between them
to determine which tuple is indeed the No. h + 1. §5
describes our design for candidate testing.

IV. CANDIDATE GENERATION

Given the current set of top ranked tuples, the candidate
generation step is supposed to produce a set of candidate
tuples, one of which is guaranteed to be the next ranked tuple
in the database. In subsection §6-3, we discuss finding the
next ranked tuple matching a selectivity constraint. The deter-
mination of the exact next-ranked tuple from the candidate set
is done using the candidate testing oracle described in §5. In
this section, we first describe a baseline approach for candidate
generation, and then introduce a more efficient algorithm using
a notion of directed acyclic graphs (DAG) of tuples. The DAG
based algorithm exploits the ordering information provided
by query answers to potentially complete multiple rounds of
candidate generation in a single iteration (i.e., it may answer
multiple consecutive GETNEXT calls without additional query
cost). Recall from §2 that we make the realistic assumption of
k > 1.

A. Baseline Approach

The essence of candidate generation can be stated as fol-
lows. Given the top-h tuples, candidate generation needs to
identify a set of queries that is guaranteed to “cover” (i.e.,
return) the next-ranked (i.e., No.(h + 1)) tuple. One can see
that such a set of queries must together match all possible
tuples in the database - in order to ensure that no other tuple
has a higher rank than the next-ranked tuple being covered.

We start by considering a simple baseline approach as
follows: First, find a set of attributes A such that if we
partition the top-h tuples based on their value combinations
for attributes in A, then each partition contains fewer than
k elements. Since each tuple is unique, such an A already
exists. After finding A = {Ai1 , . . . , Aij}, we construct queries
of the form qi: SELECT * FROM D WHERE Ai1 = vi1
AND · · · AND Aij = vij for all possible value combinations
of vi1 ∈ Dom(Ai1), . . . , vij ∈ Dom(Aij), and execute all
such queries. One can see that these queries completely cover
the database domain and thus return a candidate set for the
No.(h+1) tuple. To understand why, note that the No.(h+1)
tuple must be returned by one of the queries issued, because
otherwise the query which matches the No.(h+1) tuple must
return a tuple that directly dominates the No.(h+ 1) tuple.
Example 1: Given the top-3 tuples in the running example,
suppose we want to retrieve the next ranked tuple. We identify

S1 S2

t7 t4

t5

t3

Fig. 1. DAG used in Examples 1 and 2

an attribute, say A3 (or A4), such that the number of tuples
having the values 0 and 1 are less than k = 3. We execute two
queries by augmenting q - specifically, q1: SELECT * FROM
D WHERE A3 = 0 returns new tuples {t7} and q2: SELECT
* FROM D WHERE A3 = 1 returns new tuples {t4, t5}. The
candidate set for 4-th ranked tuple is the set {t4, t5, t7}. If we
want to retrieve the 5-th ranked tuple, we can choose any of
the attributes A2, A3 or A4 to partition the top-4 tuples.

Analysis: The number of queries executed to identify the can-
didate set depends on the domain of the attribute(s) selected.
Given an attribute set A, the number of queries executed is∏

A∈A |Dom(A)|.

B. DAG based Approach

In this subsection, we develop a DAG-based algorithm
which leverages the order information provided in the query
results to further reduce the number of returned candidate
tuples, and to identify the candidate sets for multiple next-
ranked tuples at a single iteration. In other words, our DAG
based approach retrieves the candidate sets for as many next
ranked tuples as possible so that subsequent GetNext do not
incur any additional query cost.

The data structure used in our approach is a directed acyclic
graph (DAG) called the dominance directed graph. Each node
in the DAG correspond to a tuple and a directed edge exist
from node u to node v if u dominates v. Given the result
of any query q, we can form an DAG from it results. If the
query returned |q| tuples, then the DAG would have at most(|q|
2

)
edges and an linear chain of |q| tuples as a subgraph.

An example of the DAG formed from queries q1 and q2 from
Example 1 is in Figure 1. Given a set of queries qi, we can
form a set of linear chains from their results. Let Si denote
the i-th linear chain and S be the set of all linear chains.
The notation head(Si) returns the tuple with highest rank in
Si while head(S) returns the set of highest ranked tuples in
each chain.

The primary aim of this approach is to identify a linear of
chain of consecutively ranked tuples, if any. If such a chain
exists, then the tuples from the chain can be returned for the
subsequent GetNext calls without additional query cost. We
use two observations to extract this chain. First, the only tuples
that can dominate the candidates for th+1 are the ones in the
top-h. Second, since the database has a fixed (but hidden)
global order of all tuples, there always exists a dominance
relationship (i.e., direct comparison) between the tuples with
rank h and h+1. If not, the ranks of these two tuples can be

flipped without violating any other relative rankings.
To see how these observations are useful, consider the

augmented queries from the baseline approach. Each such
query qi results in a linear chain Si. We can see that head(Si)
dominates other tuples from Si. Hence, head(Si) is the only
tuple from Si that needs to be added to candidate set. Since
tuples th and th+1 must be directly comparable, we need to
consider only the head of each linear chain and compare it
with tuple th.

The overview of the algorithm is as follows. We have a
list of linear chains (from augmented queries of prior GetNext
invocations) and the linear chain, say Si, from which tuple
th was extracted. We perform pairwise comparison between
tuples from different linear chains. An edge is added from
node u to node v, if they are directly comparable and u ranks
higher than v. Then we compare the tuple th with the head
of each chain except Si. If none of the heads are directly
comparable with th, then we can assign head(Si) to be the
next ranked tuple without even performing candidate testing.
This is possible due to the fact that consecutively ranked tuples
are always comparable. If some of them are comparable with
th, only these form the candidate set for th+1. The candidate
tuples are then compared pairwise with each other to identify
non dominated tuples. The domination can be either direct or
indirect. It is easy to see that tuple th+1 is guaranteed to be
among the non dominated tuples that are also comparable to
tuple th.

If there are multiple candidate tuples for th+1, then the
candidate testing oracle must be invoked. If not, we are
guaranteed that the only candidate tuple must have rank h+1.
The candidate tuple is then removed from its linear chain and
the process is continued till the number of candidates for the
next ranked tuple is more than 1. This can potentially result
in multiple consecutive next ranked tuples to be retrieved.

Example 2: Consider the same setting as Example 1. We
wish to extract 4-th ranked tuple from a top-3 interface.
Using attribute A3, we construct two augmented queries q1
and q2 resulting in two linear chains S1 and S2. The last
tuple t3 belonged to linear chain S2. The resulting DAG
can be seen from Figure 1. Both the tuples t7 and t4 are
comparable with t3 and do not dominate each other. However,
t7 is indirectly dominated by t4 through t5. Hence we can
immediately declare t4 as the 4-th ranked tuple. Since t5 also
dominates t7, it is identified as the 5-th ranked tuple. Note that
in both the cases, no calls were made to the candidate testing
section. Additionally, we identified two consecutively ranked
tuples in a single invocation of GetNext.

Analysis : At each iteration, let the number of linear chains
be l. The query cost for pairwise comparison of tuples between
chains is

∏l
i=1 |Si|. We also require an addition l queries to

compare tuple th with the heads of each chain. Thus, the
algorithm requires at most l+

∏l
i=1 |Si| in any iteration. Note

that subsequent iterations do need any additional queries till
one of the chains is completely consumed as the comparison
information between tuples has already been identified.

V. CANDIDATE TESTING

In this section, we consider the candidate testing problem
- i.e., based on prior knowledge of the top-h ranked tuples
t1, . . . , th, what queries does one need to issue to the hidden
database in order to test whether a given tuple t has rank h+1
? We start with two baseline approaches which can require
prohibitively high query costs in practice, and then present
our two ideas for improving their efficiency: (1) a reduction to
beyond-h minimal queries - which significantly reduces both
worst- and average-case query costs, and (2) a heuristic query
ordering - which further reduces the query cost in practice. It
must be noted that if the ranking function is known and based
on the attributes returned by the hidden database (e.g. sort by
price), then the next ranked tuple can be directly identified
from the candidate tuples without an explicit candidate testing
phase or querying the hidden database for comparison.

A. Baseline Approaches

To prove that t indeed has rank h+1, we have to ensure that
no tuple in the database, other than the top-h ones, dominates
t. A seemingly straightforward baseline approach is then to
first crawl all other tuples from the database, and then compare
each of them with t to identify any dominance relationship.
The problem with this approach, however, is that the crawling
step requires at least n/k queries - where n is the number
of tuples in the database and k is as in the top-k interface -
because each query returns at most k tuples. Most common
hidden web databases routinely have hundreds of thousands
of tuples with a relatively small value of k, resulting in a
prohibitive query cost to test a single tuple.

We now consider another baseline which is enabled by the
following observation: according to the definition of domi-
nance relationship shown in §3, the only queries which may
“reveal” a tuple dominating t are those that actually match t
- i.e., queries of the form

q : SELECT * FROM D WHERE Ai1 = t[Ai1] AND · · ·
AND Air = t[Air] (1)

where {i1, . . . , ir} ⊆ {1, . . . ,m} (recall that m is the number
of attributes). Specifically, t has rank h+1 if and only if every
query of the form (1) either returns t as the highest-ranked
non-top-h tuple, or returns only tuples in the top-h.

Thus, our second baseline is to issue all queries matching
t. One can see that the query cost for the second baseline
is (m0) + · · · + (mm) = 2m. While this number is often much
smaller than n/k for a practical hidden database (because there
are usually only a few, e.g., 5 or 10, attributes that can be
specified on the input web interface), issuing 2m queries for
each candidate tuple may still lead to an extremely high query
cost. In the following two subsections, we develop our two
ideas for reducing query cost respectively.

B. Beyond-h Minimal Queries

Our first idea is to reduce the space of queries required for
rank testing from all queries which match t (i.e., of the form

in (1)) to a much smaller subset which we refer to as the
beyond-h minimal queries. In the following, we first define
beyond-h minimal queries and show the completeness of such
queries - i.e., issuing them suffices for rank testing. Then,
we describe a (somewhat surprising) mapping of beyond-h
minimal queries to finding minimal infrequent itemsets - a
problem that has been extensively studied in the database and
data mining communities (e.g., see survey in [7]). Finally, we
leverage the existing results on minimal infrequent itemsets to
derive an upper bound on the number of beyond-h queries.

Definition and Completeness: For any query q which matches
t, we use S(q) to represent the companion attribute set of the
query - i.e., the set of attributes involved in the query. For
example, S(q) = {Ai1 , . . . , Air} for q in (1). Then, we call
q a beyond-h minimal query if and only if it satisfies both of
the following two conditions:
• q must return at least one non-top-h tuples - i.e., q must

match fewer than k tuples in t1, . . . , th
• any query q′ which matches t and has S(q′) ⊂ S(q) must

only return top-h tuples - i.e., q′ must match at least k
tuples in t1, . . . , th.

One can see from the definition that, as the name suggests, q
is a “minimal” query which returns any tuple beyond the top-h.
We now explain why issuing only beyond-h minimal queries
suffices for rank testing. Consider the testing of whether t is
the tuple with rank h+ 1. A key observation here is that any
query q0 which matches t but is not a beyond-h minimal query
must satisfy one of the following two conditions:
• If q0 matches at least k tuples in t1, . . . , th, then one can

already infer the answer to q0 from the knowledge of
t1, . . . , th - i.e., q0 is useless for rank testing.

• If q0 matches fewer than k tuples in t1, . . . , th but is
not a beyond-h minimal query, then there must exist a
beyond-h minimal query q′0 such that S(q′0) ⊂ S(q0). If
q′0 returns t as the top-ranked tuple besides top-h, then
we are already certain that no non-top-h tuple matching
q0 can outrank t. Otherwise, we are already certain that
t cannot have rank h+ 1 - i.e., in either case, we do not
need to issue q0.

Example : Considering the running example from Table I,
we can see that A3 = 1 and A4 = 1 are two examples of
beyond-h queries for t4.

Mapping: We now show that the problem of finding all
beyond-h minimal queries is equivalent to finding all minimal
infrequent itemsets over a transactional database. To under-
stand why, consider the following procedure which maps the
top-h tuples to h transactions. We first map each attribute Aj

(j ∈ [1,m]) to an item sj . Then, for each tuple ti (i ∈ [1, h]),
we map it to a transaction ri by including in ri all items
corresponding to the attributes on which ti and the testing
tuple t share the same value - i.e.,

ri = {sj |ti[Aj] = t[Aj]}. (2)

We can see that, with this mapping, the companion attribute
set of each beyond-h minimal query q, i.e., S(q), becomes a

minimal infrequent itemset over the h transactions, with the
frequency threshold being k/h. This observation can be readily
made from the definition of beyond-h minimal queries: Since
such a query must match fewer than k tuples in t1, . . . , th,
S(q) is infrequent given the threshold of k/h. Since no subset
of S(q) can match fewer than k tuples in top-h, S(q) must be
minimally infrequent. One can see that the inverse also holds
- i.e., there is a one-one mapping between S(q) and a minimal
infrequent itemset.
Example : Suppose we have extracted the top three tuples and
want to determine if tuple t4 is indeed the 4-th ranked tuple.
We first map tuples t1, t2, t3 to transactions as r1 = {A1 =
0, A5 = 1}, r2 = {A1 = 0, A4 = 1, A5 = 1} and r3 =
{A1 = 0, A3 = 1, A5 = 1}. The threshold is 3

3 = 1. The
infrequent itemsets are A3 = 1 and A4 = 1 which correspond
to beyond-h queries for t4. Also, the number of beyond-h
queries is dramatically smaller than the 25 queries needed in
the previous approach.

While (as we shall show below) the mapping enables us to
derive an upper bound on the number of beyond-h minimal
queries, we would like to remark here two major differences
between our problem and the traditional problem of finding
minimal infrequent itemsets.

First, even though finding all minimal infrequent itemsets
is known to be #P-complete, the time complexity is not really
a concern for our problem because our input size m - i.e.,
the number of attributes - is usually much smaller than the
number of items in a transactional database. As such, we
could simply enumerate all 2m possible itemsets (and find the
minimal infrequent ones) without causing significant overhead.
What is a major concern for us, however, is the number of
minimal infrequent itemsets because it translates to the number
of queries we have to issue through the web interface - a costly
and time-consuming process.

Second, our frequency threshold, i.e., k/h, is generally
much larger than the threshold traditionally considered for
minimal infrequent itemsets. As we mentioned in §1, even an
h = 2k may bear significant interest as third-party analyzers
are most likely interested in those highly ranked, albeit outside
top-k, tuples. As we shall show below, this unusually high
threshold enables us to improve the upper bound on the
number of beyond-h minimal queries when h is small.

Upper Bound: First, according to the existing results on the
number of minimal infrequent itemsets, that the number of
beyond-h minimal queries can be bounded by

(
m

m/2

)
. We

now show that when h is small, specifically h ≤ m/2+k−1,
the number of beyond-h minimal query q has another upper
bound of

(
m

h−k+1

)
.

An important observation here is that the number of predi-
cates in a beyond-h minimal query, say q, is at most h−k+1.
To understand why, consider a query-construction process in
which we start with the SELECT * query, and then gradually
add into it one conjunctive predicate in q (i.e., one attribute in
S(q)) at a time, until the query matches fewer than k tuples
in the top-h. One can see that each predicate being added, say

Ai = t[Ai], must remove at least one top-h tuple from the set
of tuples matching the previous query, because otherwise one
can always remove Ai = t[Ai] from q without changing the
answer to q - contradicting the fact that q is beyond-h minimal.
As such, once h − k + 1 predicates are added to the query,
the number of top-h tuples matching the query must drop to
below k - i.e., S(q) contains at most h − k + 1 attributes.
Again, since all beyond-h minimal queries forms an anti-chain,
the number of them is at most

(
m

h−k+1

)
when each beyond-

h minimal query contains at most h − k + 1 predicates and
h− k + 1 ≤ m/2.

In summary, we have the following theorem:
Theorem 1: Given the top-h tuples, the maximum number

of queries one needs to issue for testing whether a tuple has
rank h + 1 over a database of m attributes and n tuples,
c(n,m, h+ 1), satisfies

c(n,m, h+ 1) ≤
(

m

min(h− k + 1,m/2)

)
. (3)

C. Query Ordering
Our next idea to reduce query cost that works very well

in practical hidden databases is a heuristic - query ordering.
Recall that beyond-h query is a minimal query that returns
at least one non-top-h tuple. Given a candidate tuple t, if all
its corresponding beyond-h minimal queries returns t as the
highest ranked non-top-h tuple, then we can conclude that no
other tuple dominates t and hence t has rank h+1. Note that
to make this conclusion, it is mandatory to execute all the
beyond-h queries.

The key idea in query ordering is that of elimination. If
we can eliminate all but one tuple from the candidate set,
then the remaining tuple has to be the next ranked tuple and
we can make that conclusion even without executing any of
the beyond-h queries for it. This is due to the fact that the
candidate generation step produces a set of tuples one of which
is guaranteed to be in the next ranked tuple. The query ordering
heuristic takes the idea a little further.

Given a candidate tuple t and one of its beyond-h queries
q, there are two possible results : (1) t is the top ranked non-
top-h tuple (2) t is not the top ranked non-top-h tuple. In the
first case, the query q did not give any contradicting evidence
for t and the next beyond-h query needs to be executed.
On the other hand, the second outcome provides an evidence
that disqualifies t from being the next ranked tuple. i.e. the
procedure for testing t can be terminated early. The heuristic
tries to reorder the execution of beyond-h queries so that if t
is not the No. h+ 1 ranked tuple, it is detected earlier.

While reordering the queries of a single candidate tuple is
useful by itself, the maximum advantage is obtained when
the set of beyond-h queries of all the tuples in candidate set
are reordered. By ordering queries based on the chance that
it eliminates atleast one candidate tuple and executing them
in that order, we eliminate as many candidates as possible
in the least number of queries. Furthermore, while executing
the queries, any candidate tuple dominate by others can be
immediately rejected.

The heuristic relies on two factors that make a beyond-
h query q useful. Note that both the factors implicitly favor
shorter queries over longer ones.
• The number of tuples in candidate set matched by q. If
q matches l tuples in candidate set, we can immediately
eliminate the l − 1 dominated candidates after executing
q as they cannot have rank h+ 1.

• The expected number of tuples in the database that is
matched by q. If q matches a large fraction of database,
then there is a high likelihood that one of such tuples will
be ranked higher than candidate tuple t. Of course, since
the entire database is not available to us, we estimate
the fraction by assuming a random database where the
attribute values are uniformly distributed. While this
assumption does not always hold, it serves as a useful
approximation and heuristic. Given a boolean database
with 5 attributes and any query with two attributes can
be expected to match 25% of the tuples.

In summary, the query ordering heuristic pools the beyond-
h queries of all candidate tuples and reorders them based on
a weighted combination of the two factors described above.
The weights can be determined using domain knowledge of
the hidden database. The queries are executed in the order
so as to eliminate the candidate tuples as early as possible.
Any candidate tuple dominated by a non top-h tuple or other
candidate tuple are eliminated. The process is continued till
only one candidate remains.

Example : Suppose we wanted to determine if t3 or t4 is
the third ranked tuple. A3 = 1 and A4 = 1 are two of the
beyond-h queries for t4 while the corresponding ones for t3
are A3 = 1 and A4 = 0. Since the query A3 = 1 matches both
t3 and t4, it is executed before either of A4 = 1 or A4 = 0.
After executing A3 = 1, we note that t3 is ranked higher than
t4 in the result and hence declare it as the 3-rd ranked tuple.

Analysis : The query cost of heuristic is bounded by the
upper bound for the number of beyond-h queries for the tuples
in candidate set. In the worst case, this procedure degenerates
to executing all the beyond-h queries for all but one of the
candidate tuples.

VI. ALGORITHM DESIGN AND EXTENSIONS

In this section, we integrate the candidate generation and
testing techniques discussed in previous two sections to de-
velop our final algorithms for GETNEXT. In addition, we
shall describe different extensions of our algorithms such as
retrieving the top ranked tuples when no unique total order
exists among them or retrieving top ranked tuples that satisfy
additional user specified filters.

A. Algorithms BEYOND-h-GETNEXT and
ORDERED-GETNEXT

We start by integrating our DAG-based candidate generation
algorithm with the beyond-h queries based candidate testing
algorithm to develop the BEYOND-h-GETNEXT algorithm.
To be the next ranked tuple, any candidate tuple must be
the top ranked non top-h tuple for each of its beyond-h

queries. Algorithm 1 depicts the pseudocode of BEYOND-
h-GETNEXT.

Algorithm 1 BEYOND-h-GETNEXT
1: Input parameters : topH , the set of top ranked tuples
2: Get candidates for th+1 using candidate generation
3: for each candidate tuple t do
4: Generate and execute beyond-h-queries for t
5: If any tuple other than top-h tuples dominate t, reject t
6: end for
7: return unrejected tuple as th+1

We also integrate our candidate generation algorithm with
the heuristic candidate testing algorithm to develop the
ORDERED-GETNEXT algorithm. The only difference be-
tween ORDERED-GETNEXT and BEYOND-h-GETNEXT is
in the rank testing phase. In ORDERED-GETNEXT, we first
identify the beyond-h queries for all candidate tuples and order
them based on their likelihood of rejecting a candidate tuple.
The queries are executed until all but one candidate tuples have
been rejected. The remaining tuple is declared as No. h + 1
tuple. Algorithm 2 depicts the pseudocode of ORDERED-
GETNEXT.

Algorithm 2 ORDERED-GETNEXT
1: Input parameters : topH , the set of top ranked tuples
2: Get candidates for th+1 using candidate generation
3: Collect the beyond-h queries of all candidates and order

them based on likelihood to reject candidates
4: for each query do
5: Execute query
6: Reject any candidate tuple dominated by other candi-

dates or a non top-h tuple
7: If only one candidate left, break
8: end for
9: return remaining tuple as th+1

B. Absence of Total Order within Top Ranked Tuples

One of the assumptions that was made by the algorithms
was that the set of top ranked tuples that we wish to retrieve
are totally ordered and the order is inferable from the hidden
database interface. Specifically, we assumed that tuples th and
th+1 was directly comparable. In this subsection, we discuss
how to handle the different scenarios when the assumption
does not hold.

Two tuples can be compared with each other either directly
or indirectly and similarly the dominance relationship can be
established directly or indirectly through other intermediate
tuples. For example, we might have two tuples t and v that
are not directly comparable. However, if t � u and u � v,
then we can indirectly infer their dominance relationship. If
two tuples are not comparable at all, even indirectly, then their
dominance relationship cannot be established. Choosing either
of the tuples to be the next ranked tuple results in a potentially

valid total ordering from the limited information available.
The possibility of two tuples not comparable affects both the
candidate generation and testing steps.

Candidate Generation: In candidate generation, if the head
tuple of every linear chain was not comparable to th, then
we cannot assign the head tuple from the linear chain from
which th was extracted to be the next ranked tuple (as it is not
comparable to th). All the non dominated candidate tuples are
sent to candidate testing for identifying the next ranked tuple.

Candidate Testing: If multiple tuples from candidate set are
not dominated by any other tuple other than the ones in top-h
(including other tuples in candidate set), then each of them can
potentially be considered as the next ranked tuple. Hence, one
of the non dominated candidate tuples is selected uniformly at
random as the next ranked tuple and the process is continued.
This random selection creates one of the valid partial order
of the top ranked tuples. Since the output total order is no
longer accurate, a metric must be chosen to measure the
distance between the actual total order and the partial order.
The accuracy measure used is the expected distance between
a randomly generated total order and the actual total order.
The distance between two ranked list can be computed using
Kendall τ or the Spearman’s footrule.

C. Top Ranked Tuples with Selectivity Constraints

The discussions in the previous sections described tech-
niques to retrieve the top ranked tuples from the entire
database. An equally important and practical scenario is one
where the user is interested in the top ranked tuples over a
subset of the database. For example, the user might be inter-
ested in the cheapest flights with in-flight wifi. An alternate
perspective is to view the problem as retrieving top ranked
tuples where some of the attribute values are already preset by
the user, for e.g. wifi. The specified attributes then partition
the entire hidden database into two partitions - one which
matches the specified attributes and another which does not
match the specified attributes. In this subsection, we discuss
how to extend the techniques discussed so far to solve this
problem.

An initial approach one might come up with is to keep
retrieving top tuples from the entire database incrementally
till we have adequate number of tuples satisfying the user
selectivity constraints. This might be the only possible ap-
proach if the user selectivity constraint cannot be filtered
through the interface of hidden database. For e.g. if the user is
interested in top-10 flights with in-flight wifi. However if the
constraint cannot be entered via the airline interface, we can
keep retrieving top ranked tuples till we have accumulated 10
flights with in-flight wifi. If the filters are too selective, then
the number of tuples to be fetched before we return the user
results could be very high.

However, if the user’s constraints can be entered via the
hidden database interface (but user still needs more that k
results), then an alternate approach is possible. As an example,
the user might be interested in top-20 flights with wifi on a
top-10 interface where the wifi availability is an input attribute.

We can directly apply the techniques for extracting top ranked
tuples over the subset of database that satisfies the selectivity
constraints instead of applying it on the original database. This
corresponds to prefixing the selectivity constraints to each of
the queries executed by the algorithms. The candidate gener-
ation phase produces only tuples that satisfy the constraints.

The algorithms that work only on the database subset might
seem to be a more efficient approach to solve the problem and
in most scenarios it is. However, there are few factors that in-
fluence the output. First, if the selectivity constraints are coarse
or not too selective, then a large section of database would
be covered. This in turn, increases the chances of finding a
correct set of top ranked tuples satisfying the constraints. If
the number of tuples that match are small, then there is a high
likelihood that the tuples are not comparable. In this case, we
are left with a partial order of tuples instead of a total order.

Secondly, even if a total order exist among the top ranked
tuples in the subset, it might not be possible to order them by
only looking at the candidate tuples matching the constraints.
This is because, the tuple(s) that helped to indirectly compare
and order the candidate tuples, say tx and ty could itself not
satisfy the selectivity constraint. In this case, the two tuples
are incomparable, even though a global order exist between
them. In both the scenarios, we are potentially left with a
partial order. The techniques used in linearizing the partial
order from §6-B can be used to solve this issue.

VII. EXPERIMENTAL RESULTS

In this section we describe our experimental setup, compare
the performance of algorithms for candidate generation and
candidate testing and show the efficiency and accuracy of our
methods.

A. Experimental Setup

Hardware and Platform: All our experiments were per-
formed on a quad-core 2 GHz AMD Phenom machine with 8
GB of RAM. The algorithms were implemented in Python.
Datasets: We used both synthetic and real-world data sets in
the experiments. The synthetic dataset we used is a boolean
one with 200,000 tuples and 80 attributes. The tuples are
generated as i.i.d. data with each attribute having probability
of p = 0.5 to be 1 (except for one experiment where we created
different datasets with different values of p). We refer to this
dataset as the BOOL-IID dataset. The real-world dataset we
used consists of data crawled from the Yahoo! Autos website
5, a real-world hidden database. It contains 200,000 used cars
for sale in the Dallas-Fort Worth metropolitan area. There are
32 Boolean attributes such as A/C, Power Locks, etc, and 6
categorical attributes, such as Make, Model, Color, etc. The
domain size of categorical attributes ranges from 5 to 16.
Real-World Online Experiment: In addition to the offline
experiments described above, we also directly applied our
techniques online over Amazon.com (specifically Amazon’s
Product Advertising API6) to discover the top-250 (according

5http://autos.yahoo.com/
6https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html

100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

h

Q
u
e
ry

 C
o
s
t

Beyond−h−GetNext(k=75)

Beyond−h−GetNext(k=50)

Beyond−h−GetNext(k=25)

Ordered−GetNext(k=75)

Ordered−GetNext(k=50)

Ordered−GetNext(k=25)

Fig. 2. Query cost vs h on Boolean
dataset

100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

h

Q
u
e
ry

 C
o
s
t

Beyond−h−GetNext(TxnID)

Beyond−h−GetNext(Price)

Beyond−h−GetNext(Miles)

Ordered−GetNext(TxnID)

Ordered−GetNext(Price)

Ordered−GetNext(Miles)

Fig. 3. Effect of different ranking
functions on Autos dataset

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

k

Q
u
e
ry

 C
o
s
t

Yahoo Autos(H=200)

Yahoo Autos(H=100)

Boolean IID (H=200)

Boolean IID (H=100)

Fig. 4. Query cost versus k

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

Fraction of Dataset Sampled

Q
u
e
ry

 C
o
s
t

Yahoo Autos

Boolean IID

Fig. 5. Query cost versus database
size

0 0.2 0.4 0.6 0.8 1
300

400

500

600

700

800

900

p

Q
u
e
ry

 C
o
s
t

BOOL−IID(h=150)

BOOL−IID(h=200)

Fig. 6. Query cost versus skew

0 500 1000 1500 2000
0

1

2

3

4

5

6
x 10

4

h

Q
u
e
ry

 C
o
s
t(

B
e
y
o
n
d
−

H
)

Total

Generation

Testing

Fig. 7. Query cost versus large h

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

k

Q
u
e
ry

 C
o
s
t

Candidate Generation

Ordered−Tester

Ordered−GetNext

Fig. 8. Comparing candidate gen-
eration versus testing

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Selectivity(Q)

A
v
e
ra

g
e
 R

a
n
k
 D

is
ta

n
c
e

Boolean IID

Yahoo Autos

Fig. 9. Rank distance versus query
selectivity

to sales rank) Amazon DVD titles from a top-100 interface7

provided by the API. Since the individual item description
provided by Amazon.com reveals the sales rank of the item,
we were able to verify the correctness of all results discovered
by our algorithm. For this online experiment, (top-k) search
query can be constructed using 15 categorical attributes such
as Actor, Artist, Publisher, etc., with their domain sizes ranging
from 5 to over 1,000. Amazon.com has a limit of 2,000 queries
per IP address per hour.

Algorithms: We tested two algorithms BEYOND-h-
GETNEXT and ORDERED-GETNEXT. However, since
both these algorithms use the same candidate generation
technique, we highlight the behavior of the candidate
generation and testing phase separately. In other words,
we plot the performance of algorithm GETNEXT for
different parameters and then compare the performance
of different candidate testing algorithms. This choice of
presentation accentuates the improvements provided by the
beyond-h-queries and the heuristic query ordering that gets
masked when directly comparing BEYOND-h-GETNEXT
and ORDERED-GETNEXT.

Performance Measures: We use query cost, the number of
queries executed on the hidden database as the performance

7By default Amazon’s Product Advertising API provides a top-10 interface,
while allowing a user to “Page Down” for up to 9 times, essentially leading
to a top-100 interface.

measure. This includes the queries used to retrieve candi-
date tuples, queries to compare candidates and the beyond-
h queries for each candidate. When the total order cannot
be inferred, we use expected distance between randomly
generated total order and the actual total order. The distance
between two ranked lists is computed using Kendall-τ metric.

B. Experimental Results

In the following discussion we denote the number of top
ranked tuples retrieved from the hidden database as h. In
other words, it denotes the maximum number of invocations
of GETNEXT by the third party service.

Query cost versus h: In our first experiment, we evaluated
the performance of our algorithms BEYOND-h-GETNEXT
and ORDERED-GETNEXT on the boolean dataset by inves-
tigating the query cost as a function of h for various different
values of k. As Figure 2 shows, the query cost increases with
increasing h, as is expected. Moreover, significant savings
are achieved by using the ordering heuristic in ORDERED-
GETNEXT. We also notice that k plays an important role
in the efficiency of the algorithms: larger k results in more
efficient performance. To consider a specific performance
point, when k = 75 and h = 200, ORDERED-GETNEXT
requires less than 300 additional queries to retrieve the extra
125 tuples.

We also performed similar experiments on the Autos dataset
and observed similar trends, with ORDERED-GETNEXT out-

0 0.2 0.4 0.6 0.8 1
300

350

400

450

500

550

Selectivity(Q)

Q
ue

ry
 C

os
t

Boolean IID

Yahoo Autos

Fig. 10. Query Cost versus Query Selectivity

performing BEYOND-h-GETNEXT (Figure 3). Additionally,
we also investigated the effect the specific ranking function
used has on the performance of our algorithms. As Figure 3
shows, we used three different ranking attributes: TxnID (a
unique ID for each tuple), as well as attributes such as Price
and Miles. We note that the performance of our algorithms
vary for different ranking functions, but nevertheless are still
very efficient in all cases (and as noted earlier, our algorithms
do not try to take advantage of any knowledge of these ranking
functions).

Query cost versus k: In our next experiment, we investigated
the effect of k on the query cost for fixed values of h, for both
the boolean dataset as well as the Autos dataset. As Figure 4
shows, the positive effect of larger values of k on the query
cost is dramatic, with larger values of k being very effective
in reducing the query cost of our algorithms. This is to be
expected, as our earlier arguments in the paper have shown
that large k significantly reduces the number of queries needed
in the candidate generation and testing procedures (since the
number of minimal infrequent itemsets in a database rapidly
reduces with increasing support threshold).

Query cost versus database size: Since our algorithms are
designed to retrieve only the top-h tuples from the database,
the actual size of the database should not have a significant
impact on the performance of our algorithms. This is verified
in Figure 5, which shows that the query cost remained prac-
tically unchanged for ORDERED-GETNEXT, even though
we try our experiments on various fractional sizes of the
original databases (the slight dip in query cost is attributable
to the uncertainty of the sampling process). In this experiment,
k = 100 and h = 200.

Query cost versus skew: We experimented with ORDERED-
GETNEXT (k = 100, h = 200) on several boolean databases
created with different values of skew parameter p. As Figure
5 shows, the algorithm is most efficient when the database
has equiprobable 1s and 0s, but the cost increases when the
proportion becomes unbalanced. This is attributable to the fact
that when the database contains more 1s (or more 0s), the
algorithm has to “dig deeper” - i.e., issue a larger number of
(and more specific) queries in order to generate all candidates.

Effect of large h: Our earlier experiments were focused on
values of h that were at most a small factor larger than k.

50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

h

#Q
ue

rie
s/

Tu
pl

es
 R

et
rie

ve
d

Beyond−h−GetNext(k=50)

Ordered−GetNext(k=50)

Beyond−h−GetNext(k=100)

Ordered−GetNext(k=100)

Fig. 11. Query Cost versus h on Amazon DVD website

Such values are meaningful in actual applications where an
user is interested in seeing a few more tuples than what has
been returned to her by the original query. But we were also
interested in stress-testing our algorithms on much large values
of h to see how they performed. Figure 7 shows the results
of such an experiment using ORDERED-GETNEXT on the
Autos dataset, where k was set at 100. As can be seen, the
query cost increases quite significantly for much larger values
of h, which leads to the conclusion that beyond a certain
point, it is actually preferable to crawl the database and extract
the top-h queries rather than use ORDERED-GETNEXT. The
figure also profiles the separate query costs of the candidate
generation and testing procedures.

Comparing generation versus testing procedures: In Figure
8, we compare the query costs of the two main proce-
dures: candidate generation and candidate testing. We ran
ORDERED-GETNEXT over the Autos dataset for h = 200
and varied k. As can be seen, the query cost is almost
equally divided between the generation and test procedures
for almost all points of the curve, with testing being slightly
more expensive.

Effect of query selectivity: In Figures 9 and 10, we investigate
the impact of selectivity. If a query is extremely selective, then
it is clear that no algorithm can extract a total order of the
top-h tuples. In such situations, our algorithms return a partial
order of the top-h tuples. As discussed in VI-B, we compare a
random total order that conforms to the returned partial order
against the true top-h tuples for that query using Kendall-τ
measure. As the query becomes less selective, the rank dis-
tance increases and its query cost becomes less, which is to be
expected as the candidate testing procedure gets opportunities
to terminate early as one needs a smaller number of queries
to exclude a tuple from consideration. Similarly, as the query
selectivity drops, our algorithm can retrieve the actual total
order. Our experiments uses ORDERED-GETNEXT for both
datasets, with k = 100 and h = 200.

Experiment against Amazon DVD Titles : To show the prac-
ticality of our algorithms, we retrieved the top-250 Amazon
DVD titles in terms of their sales rank. Note that by default,
Amazon only displays the top-100 items in any category. The
correctness of our algorithm is verified by the checking the
individual item description pages of the items discovered by

GETNEXT (which reveals the actual sales ranking of the
items). The queries were made using the Amazon Product
Advertising API and the maximum value of k is 100. A
sample query to get the top-10 PG rated DVDs ordered by
their salesrank is shown in footnote8.Figure 11 shows that
when k = 100, the top-250 titles can be retrieved using fewer
that 500 queries, well below the 2000 queries-per-hour-per-IP-
address limit imposed by Amazon.com. The figure also shows
the behavior of both BEYOND-h-GETNEXT and ORDERED-
GETNEXT for different values of k and h.

VIII. RELATED WORK

Information Integration and Extraction for Hidden
databases: A significant body of research has been done on
information integration and extraction over hidden databases
- see tutorials [8], [9]. Due to space limit, we only list a
few closely-related work: [10] proposes a crawling solution.
Parsing and understanding web query interfaces has been
extensively studied (e.g., [11], [12]). The mapping of attributes
across different web interfaces has also been addressed (e.g.,
[13]). Also related is the work on integrating query interfaces
for multiple web databases in the same topic-area (e.g., [14],
[15]). Our paper provides results orthogonal to these existing
techniques as it represents the first formal study on retrieving
top-h (h > k) tuples matching a user-specified query by
reformulating the query through a top-k interface.
Data Analytics over Hidden Databases: There has been prior
work on crawling, sampling, and aggregate estimation over the
hidden web, specifically over text [16], [17] and structured [10]
hidden databases and search engines [18]–[20]. Specifically,
sampling-based methods were used for generating content
summaries [21]–[23], processing top-k queries [24], etc. Prior
work (see [3] and references therein) considered sampling and
aggregate estimation over structured hidden databases.
Top-k Query Processing: There have been extensive studies
on retrieving the top-k tuples over a traditional database - see
[25] for a survey. Our approach differs by allowing the retrieval
of top-h tuples through a restricted top-k web interface.
Frequent Itemset Mining: In §5, we map the discovery
of beyond-h queries to the problem of infrequent-minimal-
itemset mining - a problem well studied in data mining [7].
[6] provides additional details about algorithms and properties
for infrequent itemset mining.

IX. CONCLUSION

In this paper we have initiated study on the problem of
retrieving the top-h (h > k) tuples from a hidden web
database that only provides a top-k search interface. To address
the fundamental operator GETNEXT, we proposed a two-
step process, candidate generation and candidate testing, and
developed efficient algorithms for both steps. We conducted
comprehensive set of experiments over synthetic datasets and

8http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService
&AWSAccessKeyId=[fill]&Operation=ItemSearch&SearchIndex=DVD
&ResponseGroup=Large,SalesRank&Sort=salesrank&AudienceRating=PG
&Timestamp=[fill]&Signature=[fill]

real-world hidden databases which demonstrate the effective-
ness of our proposed techniques. There are multiple exciting
directions for future research. We intend to investigate the
possibility of retrieving the top ranked tuples approximately
- for e.g., retrieve as many top ranked tuples under budget
cost or in a rank agnostic fashion. Further, we plan to build
attractive demonstrations of mashup applications against real-
world hidden web databases.

REFERENCES

[1] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Y.
Halevy, “Google’s Deep Web crawl,” Proceedings of The Vldb Endow-
ment, vol. 1, pp. 1241–1252, 2008.

[2] M. Álvarez, J. Raposo, A. Pan, F. Cacheda, F. Bellas, and V. Carneiro,
“Crawling the content hidden behind web forms,” in Proceedings of
the 2007 international conference on Computational science and Its
applications - Volume Part II, ser. ICCSA’07. Springer-Verlag, 2007,
pp. 322–333.

[3] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, and G. Das, “Unbiased
estimation of size and other aggregates over hidden web databases,”
in SIGMOD, 2010.

[4] A. Dasgupta, G. Das, and H. Mannila, “A random walk approach to
sampling hidden databases,” in SIGMOD, 2007.

[5] X. Jin, N. Zhang, and G. Das, “Attribute domain discovery for hidden
web databases,” in SIGMOD, 2011.

[6] D. J. Haglin and A. M. Manning, “On minimal infrequent itemset
mining,” in International Conference on Data Mining, 2007.

[7] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current
status and future directions,” DMKD, 2007.

[8] K. Chang and J. Cho, “Accessing the web: From search to integration,”
in Tutorial, SIGMOD, 2006.

[9] A. Doan, R. Ramakrishnan, and S. Vaithyanathan, “Managing informa-
tion extraction,” in Tutorial, SIGMOD, 2006.

[10] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” in
VLDB, 2001.

[11] E. Dragut, T. Kabisch, C. Yu, and U. Leser, “A hierarchical approach
to model web query interfaces for web source integration,” in VLDB,
2009.

[12] Z. Zhang, B. He, and K. Chang, “Understanding web query interfaces:
best-effort parsing with hidden syntax,” in SIGMOD, 2004.

[13] B. He, K. Chang, and J. Han, “Discovering complex matchings across
web query interfaces: A correlation mining approach,” in KDD, 2004.

[14] E. Dragut, C. Yu, and W. Meng, “Meaningful labeling of integrated
query interfaces,” in VLDB, 2006.

[15] B. He and K. Chang, “Statistical schema matching across web query
interfaces,” in SIGMOD, 2003.

[16] Z. Bar-Yossef and M. Gurevich, “Mining search engine query logs via
suggestion sampling,” in VLDB, 2008.

[17] K. Bharat and A. Broder, “A technique for measuring the relative size
and overlap of public web search engines,” in WWW, 1998.

[18] K. Liu, C. Yu, and W. Meng, “Discovering the representative of a search
engine,” in CIKM, 2002.

[19] M. Shokouhi, J. Zobel, F. Scholer, and S. Tahaghoghi, “Capturing
collection size for distributed non-cooperative retrieval,” in SIGIR, 2006.

[20] Z. Bar-Yossef and M. Gurevich, “Efficient search engine measurements,”
in WWW, 2007.

[21] J. Callan and M. Connell, “Query-based sampling of text databases,”
ACM TOIS, vol. 19, no. 2, pp. 97–130, 2001.

[22] P. Ipeirotis and L. Gravano, “Distributed search over the hidden web:
Hierarchical database sampling and selection,” in VLDB, 2002.

[23] Y.-L. Hedley, M. Younas, A. E. James, and M. Sanderson, “Sampling,
information extraction and summarisation of hidden web databases,”
Data and Knowledge Engineering, vol. 59, no. 2, pp. 213–230, 2006.

[24] N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k queries over
web-accessible databases,” in ICDE, 2002.

[25] I. Ilyas, G. Beskales, and M. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Computing
Surveys, vol. 40, 2008.

