
Rank Discovery From Web Databases
∗

Saravanan Thirumuruganathan†,‡, Nan Zhang††, Gautam Das†,‡

†University of Texas at Arlington; ††George Washington University

ABSTRACT

Many web databases are only accessible through a proprietary search

interface which allows users to form a query by entering the desired

values for a few attributes. After receiving a query, the system re-

turns the top-k matching tuples according to a pre-determined rank-

ing function. Since the rank of a tuple largely determines the atten-

tion it receives from website users, ranking information for any tu-

ple - not just the top-ranked ones - is often of significant interest to

third parties such as sellers, customers, market researchers and in-

vestors. In this paper, we define a novel problem of rank discovery

over hidden web databases. We introduce a taxonomy of ranking

functions, and show that different types of ranking functions re-

quire fundamentally different approaches for rank discovery. Our

technical contributions include principled and efficient randomized

algorithms for estimating the rank of a given tuple, as well as nega-

tive results which demonstrate the inefficiency of any deterministic

algorithm. We show extensive experimental results over real-world

databases, including an online experiment at Amazon.com, which

illustrates the effectiveness of our proposed techniques.

1. INTRODUCTION

1.1 The Rank Discovery Problem
Many web databases, e.g., Yahoo! Autos, Amazon.com, are “hid-

den” behind (i.e., only accessible via) a restrictive form-like inter-

face which allows a user to form a search query by specifying the

desired values for a few attributes; and the system responds by re-

turning a small number of tuples matching the search query. Al-

most all such interfaces enforce the top-k constraint - i.e., when

∗The work of Saravanan Thirumuruganathan and Gautam Das is
partially supported by NSF grants 0812601, 0915834, 1018865,
a NHARP grant from the Texas Higher Education Coordinating
Board, and grants from Microsoft Research and Nokia Research.
The work of Nan Zhang is partially supported by NSF grants
0852674, 0915834, and 1117297. Any opinions, findings, conclu-
sions, and/or recommendations expressed in this material, either
expressed or implied, are those of the authors and do not necessar-
ily reflect the views of the sponsor listed above.
‡ Part of work done while at Qatar Computing Research Institute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th ­ 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 13

Copyright 2013 VLDB Endowment 2150­8097/13/13... $ 10.00.

more than k tuples (where k is typically a predetermined small

constant) match the user-specified query, only k of them are pref-

erentially selected according to a ranking function and returned to

the user. While such restrictive form interfaces of hidden databases

might suffice for the simplest use-cases, i.e., that of a normal user

searching for some items in these databases, they often cannot sat-

isfy users with specific needs and also prevent many interesting

third-party services from being developed over web databases. There

has been several recent works on developing techniques to enable

additional functionality over such databases that operate via the re-

strictive interface, such as sampling and aggregate estimation (see

[8, 20, 1] and references therein).

In this paper, we consider a novel problem, that of discovering

rank-related information from a hidden web database:

RANK DISCOVERY PROBLEM: Given a query q, and a tuple

t that satisfies the selection conditions of q, estimate r(t, q),
the rank of t among all tuples in the web database that satisfy

q, as accurately as possible with minimal query cost.

In a general sense, the rank discovery problem is a fundamental

data analytics task, because it seeks to determine the rank/position

of an item as compared to similar competing items along multi-

ple attributes/facets. In the case of web databases, since the rank

of a tuple largely determines the attention it receives from website

users, ranking information for any tuple - not just the top-k ranked

ones - is often of significant interest to third parties such as sellers,

customers, market researchers and investors. Solutions to the rank

discovery problem could enable new third-party application sce-

narios that have not been considered in earlier work. For example,

the author of a book on sale at Amazon would like to monitor the

ranking of her book within a set of similar competitors (e.g., how

does it rank in sales, or customer reviews, etc., compared to other

similar books on science fiction?). Likewise, competitors to an app

available at Apple’s iOS and Mac App Stores would be interested

in monitoring the app’s grossing rank and measure the market re-

sponse to determine if it is time to start competing with the app.

Although the rank discovery problem appears deceptively sim-

ple, it is challenging because most web databases do not explicitly

disclose a tuple’s rank beyond the top-k tuples. The rank has to be

discovered indirectly, by carefully issuing multiple related queries

to the website’s query interface and inferring the tuple rank by piec-

ing together the information returned from these queries. We ob-

served that different websites have widely varying characteristics,

resulting in a myriad of interesting facets and variants of the rank

discovery problem that require fundamentally different approaches

in their solutions. In the rest of this introductory section, we pro-

vide an overview of this spectrum of problem variants, highlight

their difficulties and challenges, and summarize our technical con-

tributions - both algorithmic as well as negative results.

1.2 Problem Variants and Challenges
Web databases use a broad variety of ranking functions. These

functions typically compute a score for each tuple matching the

query conditions, and return the k tuples with the highest scores.

These ranking functions can be classified along several different

dimensions. One dimension is whether the function is static or

query dependent. A static ranking function assigns tuple scores in-

dependent of the query - i.e., all tuples are globally ordered in the

database. For example, Amazon allows users to search for books by

specifying a few desired attributes (e.g., Language, Format, Genre,

Release date, Title, etc.), and the system returns up to k matching

books, ranked by price, average customer review, popularity (i.e.,

sales amount), recency, etc. One can see that all these ranking func-

tions are static. Other examples are the “sort by bestsellers” or “sort

by grossing” static ranking functions used by Apple’s iOS and Mac

App Stores. A ranking function is query-dependent if the score of a

tuple varies for different queries - e.g., where all tuples are ordered

according to the number of attribute matches between the query

and each tuple, or by a more sophisticated notion of “relevance”.

Within static ranking functions, a second dimension for catego-

rization is whether the function is observable or proprietary (i.e.,

unobservable). Observable ranking functions are those where the

end-user can determine the score of a tuple from the tuple values

alone - e.g., in the aforementioned Amazon example, if the order-

ing is by price, the score of a tuple is obvious. Observable ranking

functions may be further categorized into whether the scoring at-

tribute can be queried or not. For example, users can query for

products in Amazon by specifying desired price ranges, but cannot

specify desired recency, although both scores are observable in re-

turned products. A proprietary ranking function is one where the

tuple’s score is hidden from the public’s view - e.g., the actual val-

ues of popularity (i.e., sales amount) and/or gross sales for Amazon

and App Stores are never revealed to the end user.

We note that no matter what variant of web database we en-

counter, trivial solutions to the rank discovery problem are possible

if (1) all input tuples are very highly ranked so as to enter the top-k
results returned by the hidden database, and/or (2) the third-party

analyzer can negotiate a private agreement with the web database

owner in order to retrieve the ranking of the entire query results

beyond the top-k limitation. Nonetheless, note that the informa-

tion most useful to an investor and/or competitor occurs before a

book/app enters the top-seller list and becomes more or less known

to the general public anyway. On the other hand, private negotia-

tions are often very difficult due to revenue sharing, legal require-

ments, security and myriad of other thorny issues. As such, our

focus in this paper is to develop automated third-party algorithms

that only use the public interfaces of web databases without requir-

ing any additional cooperation from the database owners.

Another seemingly straightforward solution to issue all possible

queries through the web interface so as to crawl all rank-related in-

formation one could possibly infer from the hidden database - and

then analyze the query answers locally to address the above prob-

lems. Nonetheless, a key pitfall of this solution is its prohibitively

high query cost [17] - which is simply infeasible for real-world web

databases which often impose a per user/IP limit on the number of

queries one can issue over a given time frame (e.g., Google Search

API allows only 100 free queries per user per day).

Given the pitfalls of the above mentioned approaches, in this

paper we develop algorithms to solve the rank discovery problem

only using the public interfaces of web databases, and with minimal

small query cost - a goal shared by most existing studies on explor-

ing hidden web databases because of the query-number limitations

enforced by web databases (e.g., [8]). Our algorithms produce ap-

proximate answers, and thus another important design objective is

to produce answers with small relative error.

1.3 Outline of Technical Results
As mentioned above, different types of ranking functions require

fundamentally different approaches for rank discovery. For ranking

functions that are static, observable, and can be queried through

the search interface, we show that a simple solution exists for rank

discovery: use the existing aggregate estimation algorithms [8] to

estimate the COUNT of tuples with a higher rank. If the ranking

function is query dependent, then there is obviously no way to de-

termine the rank of a tuple outside the top-k ones returned by the

query - because no other query reveals its query-dependent rank

information. For the remaining cases - i.e., when the ranking func-

tion is (i) static and proprietary, or (ii) static, observable but cannot

be queried - we develop RANK-EST, a rank estimation algorithm

that interleaves the following two methods:

• RANK-EST-S, a sampling-based process which first draws

uniform random samples from the hidden databases, and then

perform rank companions between the input tuple and the

samples to enable rank estimation.

• RANK-EST-H, a randomized process which randomly con-

structs and issues queries that return tuples ranked higher

than the input tuple, and use the query answers to directly

produce a rank estimation.

While RANK-EST-S works well for most tuples in the database, it

cannot effectively handle highly ranked tuples, because a very large

sample is required to accurately estimate their ranks. RANK-EST-

H, on the other hand, is designed specifically for these tuples. As

such, by interleaving the two processes, RANK-EST achieves effi-

cient and accurate rank estimation over all tuples in the database.

Interestingly, while RANK-EST works for both proprietary and

observable ranking functions, the technical challenges facing the

design of RANK-EST-S (and consequently, the query cost required

by it) differs drastically between the two. Specifically, while com-

paring rank between the input and a sample tuple is straightfor-

ward for observable ranking functions, it can be extremely diffi-

cult for proprietary ones. We prove a hardness result showing that

no deterministic algorithm can do so without issuing an extremely

large number of queries. To address this problem, we devise LV-

RANK-COMPARE, a randomized rank comparison algorithm, in-

side RANK-EST-S. LV-RANK-COMPARE is a Las-Vegas algo-

rithm - i.e., it always produces the correct answer, but with varying

query costs across different executions.

1.4 Summary of Contributions
• We introduce and motivate the novel problem of rank discov-

ery over hidden web databases.

• We define a comprehensive spectrum of ranking functions

according to various dimensions such as query-dependent

vs. static, observable vs. proprietary, and whether the scoring

attribute can be queried or not. We discuss the feasibility of

rank discovery for each type of ranking function, and show

that different types of ranking functions require fundamen-

tally different approaches for rank discovery.

• For proprietary and observable ranking functions, we develop

RANK-EST which interleaves two separate procedures for

handling high and low ranked tuples, respectively.

• We present careful theoretical analysis including negative re-

sults that preclude efficient deterministic solutions.

Observable

Proprietary

Can be
Queried

Cannot be
Queried

Infeasible Apply [9] This PaperLegend:

Query-Dependent

Static

Figure 1: Taxonomy

• We present a thorough experimental evaluation of our algo-

rithms over real-world hidden web databases. We also de-

scribe online experiments over Amazon.com which demon-

strates the effectiveness of our proposed algorithms.

2. RANK DISCOVERY PROBLEM
In this section, we introduce a taxonomy of ranking functions

commonly used and, for each type of ranking functions, discuss the

feasibility of rank discovery. Then, we define the technical problem

addressed in the paper.

2.1 Model of Hidden Databases
Consider a hidden database D with n tuples and m input at-

tributes A1, A2, . . . , Am. Given a tuple t and an attribute Ai, let

t[Ai] be the value of Ai in t. Let Dom(Ai) be the domain of Ai.

For the purpose of this paper, we restrict our attention to categori-

cal attributes and assume the appropriate discretization of numeric

ones. We also consider all tuples distinct and without null values.

We consider a user query q to be a collection of conjunctive

constraints of the form SELECT * FROM D WHERE Ai1 = vi1
& . . .&Ais = vis , where i1, . . . , is ∈ [1,m] and vij ∈ Dom(Aij).
The hidden databases generally restrict users to top-k tuples- which

may be presented on one page or over multiple pages (accessed by

page turns or clicking next at the bottom of the results page)1.

Formally, let the set of tuples matching q be Sel(q). If |Sel(q)| >
k, an overflow occurs and only the top-k results are returned,

along with an overflow flag indicating that more tuples matching

the query cannot be returned. If |Sel(q)| = 0, then an underflow is

said to occur. Otherwise, i.e., when |Sel(q)| ∈ [1, k], we say that q
is valid - i.e., the user retrieves all tuples matching the issued query.

While our running example below uses a Boolean database for ease

of exposition, all our results hold for any categorical database.

Running Example: Table 1 shows a simple table which we

use as running example throughout this paper. There are m
= 5 Boolean attributes and n = 8 tuples.The tuples are listed

in the order of their rank - i.e., t1 is top-ranked.

2.2 Taxonomy of Ranking Functions
Ranking function is what the hidden database uses to determine

which k tuples to return when a query overflows. Consider a rank-

ing function f(·) which takes a tuple and a query as input and out-

puts a score. There are two broad categories of ranking functions:

static and query-dependent. A ranking function f(·) is static if

∀q1, q2, f(q1, t) = f(q2, t). Otherwise, it is query-dependent.

Within static ranking functions, we can further partition them

into two types, observable or proprietary. A ranking function is

observable if f(t) is displayed along with (or can be inferred from)

other attributes when a tuple is returned in a query answer. Other-

wise, it is proprietary. Examples of observable ranking functions

1For example, Google limits the number of page turns to 10 if 100
results are displayed per page, and 100 if 10 results per page - ef-
fectively resulting in a top-1000 interface.

TABLE 1. Running Example

A1 A2 A3 A4 A5

t1 0 0 0 0 1

t2 0 0 0 1 1

t3 0 0 1 0 1

t4 0 1 1 1 1

A1 A2 A3 A4 A5

t5 1 1 1 0 1

t6 1 1 1 1 1

t7 1 0 0 0 0

t8 0 0 0 0 0

include Price, Listed Date, etc., used by many e-commerce web-

sites. Proprietary ranking functions include “Popularity” in nu-

merous websites such as Amazon.com, Priceline, Kickstarter, etc.,

“sort by gross sales” used by Apple’s and Android’s App Stores, as

well as many proprietary scoring functions such as Moviemeter in

IMDB and “Rank by value” in Seatguru.

Finally, within observable (static) ranking functions, we can fur-

ther partition them into two categories according to whether the

scoring attribute can be queried through the search interface. Specif-

ically, a ranking function can be queried if it is possible to issue

SELECT * FROM D WHERE f(t) = c through the interface.

An example is the Recency ranking function used by Amazon.com.

Figure 1 depicts the above taxonomy of ranking functions.

2.3 Feasibility of Rank Discovery
In this subsection, we consider the feasibility of rank discov-

ery over four types of ranking functions: (i) query-dependent, (ii)

static, observable can be queried through the interface, (iii) static,

observable but cannot be queried, and (iv) static and proprietary,

respectively. Figure 1 summarizes the following feasibility results:

Query-Dependent Ranking Functions: For a query-dependent

ranking function, there exists no fixed ordering among tuples (as

changing the query, changes the order of tuples) which makes the

rank discovery problem meaningless. Hence, unless the input tuple

is in the top-k of the query, no mechanism can compute its rank.

Observable and Queriable Ranking Functions: At the other ex-

treme - when a ranking function is static, observable, and can be

queried through the search interface - rank discovery can be re-

duced to the problem of aggregate query processing, which has

been addressed in existing work [8]. The reason is simple - since

SELECT * FROM D WHERE f(t) = c is supported by the in-

terface, the aggregate estimation algorithms in [8, 20, 1] can be

readily applied to estimate SELECT * FROM D WHERE f(t) >
f(t0), which is exactly the rank of input tuple t0.

Observable and Non-Queriable Ranking Functions: When an

observable ranking function is nevertheless not queriable through

the interface, the simple solution described above no longer applies.

However, rank discovery is always feasible - for example, a naive

approach is to crawl all tuples from the database, and then rank

them locally according to observations of the scoring attribute.

Proprietary Ranking Functions: For proprietary ranking func-

tions, a key concept for understanding the feasibility of rank dis-

covery is the direct domination relationship between two tuples.

To understand the concept, consider what rank-related information

a query answer q reveals. For the (at most) k tuples returned by

q, their ranks can be compared according to the query answer. In

addition, it is also possible to infer from q rank-related information

for tuples that are not returned by it. Specifically, for two tuples t
and t′ which match q, we can determine which has a higher rank if

(at least) one of them is returned by q:

• if q returns t but not t′, then t is ranked higher,

• if q returns t′ but not t, then t′ is ranked higher, or

• if q returns both, then we can make the comparison based on

the returned order.

For two given tuples, if there exists a query such that any of the

three cases occurs, we say the two tuples are directly comparable

with each other, with the higher-ranked tuple directly dominating

the other one.

DEFINITION 1. [Direct Domination] A tuple t is said to di-

rectly dominate another tuple t′, i.e., t ≻ t′, if and only if t and t′

are directly comparable and t ranks higher than t′.

Consider the running example shown in Table 1 with k = 2. We

can observe that t1 and t3 are directly comparable using the query

q1:SELECT * FROM D WHERE A1 = 0 AND A2 = 0 AND

A4 = 0 AND A5 = 1 with t1 ranked higher than t3. Similarly,

we can see that tuple t2 directly dominates t3 using the query q2:
SELECT * FROM D WHERE A1 = 0 AND A2 = 0 AND A5 =
1. The result includes t2 but not t3 - i.e., t2 ranks higher.

Given the direct domination relationships, the feasibility of rank

discovery for a tuple t boils down to whether, for all other tuples t′

in the database, it is possible to find a sequence of tuples t1, . . . , th,

such that t ≻ t1 ≻ · · · ≻ th ≻ t′ or vice versa. If the chain can

be found for all other tuples, then the rank of t can be precisely

discovered. Otherwise, the fewer chains we can find, the wider a

range we have to settle on estimating the rank. We call this problem

the potential discrepancy between real and revealed ranks.

Fortunately, as we shall show in §6.2 and §7, while the discrep-

ancy problem does exist in theory, the probability for it to occur in

practice is extremely low - i.e., in almost all cases, the real rank is

exactly disclosed by the top-k interface. Thus, rank discovery is

indeed feasible for proprietary ranking functions.

Computing D(t): Given a tuple t, one can obtain the set of

all tuples that directly dominate t, denoted by D(t), by issuing all

queries that match t - i.e. those that have predicates in the power-

set of {t[A1], t[A2], . . . , t[Am]}. Note that the number of queries

that have j predicates matching t is
(

m
j

)

. Thus, one needs to issue

a total of
(

m
0

)

+
(

m
1

)

+ · · ·+
(

m
m

)

= 2m queries to compute D(t).
This result holds for both Boolean and categorical databases.

Before concluding this subsection, we make an important obser-

vation that, if two tuples are directly comparable, then we need only

one query to determine their domination relationship: the most spe-

cific query which matches both tuples - i.e., the query which con-

tains one predicate for each attribute on which both tuples share

the same value. If this query cannot return at least one of the two

tuples, then no other query can - i.e., the two tuples are not directly

comparable. In the running example, q1 is the most specific query

matching t1 and t3, while q2 is the one matching t2 and t3.

2.4 Technical Problem
Discussions in the above subsection leave us with two types of

ranking functions for which the rank discovery problem is feasible

and unsolved - those that are proprietary, and those that are ob-

servable but cannot be queried. As discussed in §1, both types are

widely prevalent in practice. Thus, we focus on solving the rank

discovery problem for these two types in the paper.

Objective of Rank Discovery: Intuitively, the objective of rank

discovery is to find the rank of a given tuple, i.e., the number of

tuples with a higher rank than the given tuple, within a user-defined

subset of the hidden database - which we model using a filtering

query qF. For example, a user may be interested in the rank of

a car within all Honda Accords, in which case qF is SELECT *

FROM D WHERE Make = Honda AND Model = Accord. If a user

is interested in the global rank within the entire database, then qF is

SELECT * FROM D. In this paper, we support any filtering query

qF as long as whether t ∈ Sel(qF) can be determined solely upon

knowledge of qF and t (and not other tuples in the database2).

Given the closeness of real and revealed ranks as discussed in

§2.3, we define the problem of rank discovery as the extraction of

a tuple’s rank revealed through the top-k interface. Specifically,

DEFINITION 2. [Problem Definition] Given a hidden database

D and a filtering condition qF, The objective of rank discovery

is to compute r(t, qF) = |Ω(t, qF)|, where Ω(t, qF) ⊆ Sel(qF)
satisfies that ∀t′ ∈ Ω(t, qF), either t′ ≻ t or there exists tuples

t1, . . . , th ∈ D, such that t′ ≻ t1 ≻ · · · ≻ th ≻ t, where ≻ is the

direct domination relationship defined in Definition 1.

Performance Measures: The performance is measured using query

cost - the number of queries one has to issue through the web search

interface of the hidden database. Accuracy-wise, we consider the

relative error measure for an estimated rank r̃(t, qF) as

δ =
|r(t, qF)− r̃(t, qF)|

r(t, qF)
. (1)

Note that, compared with the absolute error measure (i.e., |r(t, qF)−
r̃(t, qF)|), relative error is more meaningful in practice. To see why,

consider an example where an algorithm produces r̃(t1, qF) = 200

for a 100-th ranked tuple and r̃(t2, qF) = 98761 for a tuple with

rank 98661. While the error on t1 represents a significant mis-

conception of t1’s status in the database, the error on t2 is hardly

noticeable - yet both have the same absolute error of 100. Hence,

we focus on the relative error measure in our theoretical analysis.

3. OVERVIEW OF TECHNICAL APPROACH
In this section, we start by describing three baseline techniques

and their respective problems. Then, we provide an overview of

our technical approach to address these problems - with details dis-

cussed in §4 and 5. Note that, in this section and for most part of the

paper, we focus on discovering the global rank of a tuple within the

entire database (i.e., when qF in Definition 2 is SELECT * FROM

D). Then, we shall discuss in §6.1 a simple extension to support

other qF. To simplify the notations, we denote the global rank of t
by r(t) = r(t,SELECT * FROM D).

3.1 Baseline Techniques
We start by describing three baseline ideas for solving the rank

discovery problem, and point out their respective problems which

motivate our proposed design of RANK-EST in this paper.

Crawling: The first baseline idea is to crawl all tuples and the

associated rank information from a hidden database, and then rank

all tuples locally (as in traditional databases) to derive the rank of

the input tuple. The main problem of this approach is the extremely

high query cost incurred by crawling, especially for large hidden

databases. Lower-bound results derived in [17] show that crawling

requires a prohibitively high cost of at least Ω(m · n2/k2) queries

for certain categorical databases with a top-k interface - where m
and n are the number of attributes and tuples, respectively.

Sampling: The second baseline approach is to first draw a uniform

random sample of the hidden database [7, 9, 10], and then compare

the rank of the input tuple with all sample tuples to extrapolate its

rank in the database. This approach has two main problems:

First, it is unclear how to effectively compare the ranks of two

given tuples when the ranking function is proprietary. Note that

while doing so for two directly comparable tuples (as defined in

2e.g., queries such as SELECT * FROM D WHERE Price >

(SELECT AVG(Price) FROM D) are not supported.

Definition 1) are easy, many pairs of tuples cannot be directly com-

pared. For example, t6 and t8 in the running example do not have

a direct domination relationship, because the only query which

matches both tuples is SELECT * FROM D which returns nei-

ther. But one can still compare t6 with t8 by using t7 as a “bridge”,

because t6 is returned by A1 = 1, while both t7 and t8 are returned

by A5 = 0. How to find such bridges, however, is a challenge for

applying the sampling idea to proprietary ranking functions.

The second problem with this sampling-based approach is that

the estimated rank may not be accurate enough for highly ranked

tuples, unless one incurs a very high query cost to draw a large sam-

ple. To understand why, note that according to the accuracy mea-

sure in (1), to achieve the same accuracy level, the absolute error

of rank estimation has to be much smaller for highly ranked tuples

than lower ranked ones. On the other hand, it is easy to see that the

sample size is inversely proportional to the square of absolute error

- i.e., one needs a much larger sample for highly ranked tuples. For

example, for a 1-million tuple database with k = 50, just to esti-

mate a 100-th ranked tuple’s rank within a relative error of 50%,

the sampling-based approach needs at least an expected number of

1,000,000 / 100 = 10,000 samples - which could mean hundreds of

thousands of queries even with the state-of-the-art sampler [10].

Ordered Crawling: The third baseline we consider is ordered

crawling. The key idea here is to crawl tuples in the descending or-

der of their ranks. GETNEXT primitive described in [19] retrieves

the No. h ranked tuple given the top-(h-1) tuples as input. While

[19] solves an entirely different problem of retrieving top-h tuples

through a top-k interface (h > k), one can see that GETNEXT is

capable of obtaining the rank of a highly ranked tuple without in-

curring the query cost for a complete crawl of the database. How-

ever, not only is it unsuitable for lowly ranked tuples3, even for

highly ranked tuples the query cost can be very high. For exam-

ple, when k = 100, GETNEXT requires a prohibitive query cost of

nearly 60,000 queries for a 2,000-th ranked tuple in a 200,000-tuple

database [19]. Please see §8 for addition discussion.

3.2 Overview of Our Approach
Technical Challenges: Given the pitfalls of these three baseline

approaches, we identify two key technical challenges for support-

ing efficient rank estimation:

• Effective Rank Comparison: To address the problem of ap-

plying sampling-based estimation to proprietary ranking func-

tions, a key challenge is to efficiently compare the ranks of

two tuples that do not have a direct domination relationship.

• Efficient Rank Estimation for Highly Ranked Tuples: Since

the sampling-based approach is not effective for highly ranked

tuples, a further challenge is to efficiently position a highly

ranked tuple without crawling all higher-ranked ones.

Roadmap of Our Approach: In the remaining part of the paper,

we shall address the two challenges respectively, before combining

the techniques to form a comprehensive solution to rank discovery.

Specifically, we start by addressing the rank comparison problem

for proprietary ranking functions in §4. We first describe a deter-

ministic algorithm and its problem with high query cost - which

motivates us to propose a efficient probabilistic solution. An inter-

esting feature of this probabilistic solution is that it is a Las Vegas

algorithm - i.e., it always produces the correct result4. In most

cases, the algorithm terminates much sooner (i.e., requires much

3Note that if the input tuple happens to be last-ranked, then this
method is reduced to crawling the entire database.
4as long as such a result is revealed by the top-k interface - which,
according to Theorem 6.1, is highly likely.

fewer queries) than the deterministic algorithm - only in the worst-

case scenario will it be reduced to the deterministic algorithm itself.

Then, in §5, we address the rank-estimation problem for highly

ranked tuples. Our key idea here is to first identify all queries which

might reveal tuples with higher rank than the input tuple. Then,

we select a small subset of these queries in a random yet judicious

manner, and issue them to form a COUNT estimation for all higher-

ranked tuples - without actually crawling the tuples.

Finally, in §6, we combine the techniques proposed in §4 and §5

to form our final rank estimation algorithm RANK-EST, which can

efficiently yet accurately estimate ranks for both highly and lowly

ranked tuples. Also in this section, we explain why we aim for

rank “estimation” instead of precise “computation” in the paper by

proving hardness results. The results show that it is not only impos-

sible to precisely compute the rank of a given tuple in an efficient

manner, even approximating the rank within a (small) fixed ratio

mandates an extremely high query cost in the worst-case scenario.

4. CHALLENGE 1: RANK COMPARISON
In this section, we address the first challenge - rank compari-

son for proprietary ranking functions. The key task here is to find

a sequence of “bridge” tuples connecting the two inputs through

direct domination relationships. We start by describing RANK-

COMPARE, a deterministic yet inefficient algorithm to solve the

problem, identify the fundamental problem underlying its exces-

sive query cost, and address it with LV-RANK-COMPARE, our

randomized solution to the problem.

4.1 RANK­COMPARE
Description: The deterministic algorithm starts by testing if t and

t′ are directly comparable with each other. If not, it finds all tu-

ples which directly dominate t, denoted by D(t), by issuing all 2m

queries (as mentioned in §2.3) which match t. Then, for each tuple

ti in D(t), RANK-COMPARE tests if t′ directly dominates ti - if

so, then a bridge t′ ≻ ti ≻ t is found. It does the same for t′ - i.e.,

find D(t′) and test if t dominates any tuple within5. If no bridge

is found, RANK-COMPARE identifies all tuples directly dominat-

ing (at least) one tuple in D(t) and D(t′), respectively, and uses

it to attempt building a two-hop bridge, and (if failed) repeats this

process until finding a sequence of bridge-tuples tb1, . . . , tbh, such

that either t ≻ tb1 ≻ · · · ≻ tbh ≻ t′ or t′ ≻ tb1 ≻ · · · ≻ tbh ≻ t.
If no such a sequence can be found, then the top-k interface does

not reveal enough information for comparing the ranks of t and t′.
In essence, this iterative process is a classic breadth-first-search-

based graph reachability algorithm, if we consider all tuples in the

hidden database as vertices and the direct domination relationships

as edges. Figure 2 demonstrates such a correspondence and an ex-

ample of building a bridge from t4 to t8 in the running example.

Pitfalls of RANK-COMPARE: An obvious problem of RANK-

COMPARE is its query cost: in order to find a bridge connecting t
with t′, the iterative process of RANK-COMPARE repeatedly com-

putes D(·) which requires numerous queries when m, the number

of attributes, is large. The key reason underlying this problem is

the way RANK-COMPARE attempts to build the bridge. A large

number of queries are wasted testing tuples that are very unlikely

to be on the bridge, as we shall show in the following example.

Consider the rank comparison between t8 and t4 in the running

example, which is also illustrated in Figure 2. A key observation

5We did not pursue the other direction of finding the set of tuples
which are dominated by t as it may require crawling the entire
database - e.g., note that the tuples returned by SELECT * FROM
D directly dominate all other tuples.

t1

t2

t3

t4

t5

t6

t7

t8

t4

t5

t6

t7

t8

Step 1

Step 2

Step 3

Figure 2: Iteratively build a bridge from t4 to t8

here is that D(t8) includes not only the tuple that will eventually

serve on the bridge (i.e., t7), but a large number of other tuples

(i.e., t1, t2, t3). These tuples tend to be highly ranked - indeed,

note that tuples returned by SELECT * FROM D directly dominate

any other tuple in the database. As a result, they are highly unlikely

to appear on the bridge, especially when t and t′ have close yet low

ranks, because any tuple which resides on a bridge between t and t′

must be ranked between them. Unfortunately, RANK-COMPARE

still wastes queries testing these tuples - wasting queries building a

bridge-to-nowhere that has surpassed the rank of t′.
In the next subsection, we shall introduce our idea to signifi-

cantly speed up the bridge-construction process by finding tuples

that are most likely to serve on the bridge. Nonetheless, it is im-

portant to note that the uncertainty of bridge-construction, i.e., the

lack of knowledge on which tuple to select next for building the

bridge, is an inherent obstacle for any deterministic rank compar-

ison algorithm. Indeed, we shall prove in §6.3 a negative results

which shows that no deterministic algorithm can achieve a realistic

worst-case query cost for rank comparison - a motivation for our

proposal of a randomized algorithm.

4.2 LV­RANK­COMPARE
In this subsection, we start by describing the overarching scheme

of LV-RANK-COMPARE, a rank-based random walk with restart

on the domination-relationship graph (depicted in Figure 2). Then,

we discuss two key design issues for random walk, the selection of

the next step and the decision of when to restart the random walk,

before presenting the LV-RANK-COMPARE algorithm.

Random Walk For Bridge Construction: To compare the ranks

of t and t′, we perform the random walk both ways - i.e., we simul-

taneously start two random walks from t and t′, respectively, until

one walk reaches the other tuple. Without loss of generality, we

consider the walk from t to t′. At each step, we choose a tuple from

D(t), the set of tuples directly dominating t, by issuing a query

matching t and finding a higher-ranked tuple from its answer6. We

repeat this step to form a random walk t ≺ tb1 ≺ · · · ≺ tbh. For

each new tuple tbi encounter in the walk, we issue one extra query

(according to the method in §2.3) to determine if t′ ≻ tbi - which

indicates the successful construction of a bridge. Otherwise, we

either continue or restart the random walk.

There are two key design issues one must address : (1) how

to choose the next stop of random walk, tbi, from D(t), and (2)

whether to restart or continue a random walk if a bridge is not (yet)

found. We address the two issues respectively as follows.

Selection of tbi: For the first problem, we argue that an ideal se-

lection of tbi should satisfy the following two conditions:

6We shall discuss next how to choose which query to issue and
which tuple to select.

α. The rank of tbi should be as close to tbi−1 as possible, so as

to ensure that the bridge does not overpass t′.
β. tbi should share as many common attribute values with t′ as

possible, so as to increase the possibility for tbi to be directly

comparable with t′.

One might find Condition α counter-intuitive - rather than try-

ing to make as much “progress” (i.e., rank-increase) as possible to-

wards t′, we are seemingly making the “progress” as little as pos-

sible. To understand the rationale behind Condition α, we make

an important observation on what “progress” really means in the

bridge-building process: Note that our objective is to find tbi which

is directly dominated by t′. A key observation here is that, as long

as tbi does not “overshoot” t′ (i.e., tbi has a lower rank), whether

tbi is directly dominated by t′ has nothing to do with the rank of

tbi, but (instead) is only determined by two factors: (1) the com-

mon attribute values shared between tbi and t′, and (2) given the

most-specific query matching both tbi and t′, whether t′ has a suf-

ficiently high rank to be returned by the query. Since the rank of t′

is solely input-dependent, Conditions α and β capture the two ob-

jectives under our control: Condition α aims to ensure that tbi does

not overshoot t′, while Condition β aims to maximize the proba-

bility for tbi and t′ to be directly comparable.

In order to efficiently select tbi according to the above two con-

ditions, we start by finding queries matching t which are most

likely to return tuples with close ranks to t. Specifically, we start

with q : SELECT * FROM D, choose predicates matching t (i.e.,

A1 = t[A1], . . . , Am = t[Am]) uniformly at random and add one

at a time to q until reaching a query q′ which returns t. For exam-

ple, consider the rank comparison between t4 and t7 in the running

example when k = 3. Suppose that, for the random walk from

t7, we happen to choose predicates A4 = 0 and A1 = 1 in order.

We will stop at query q′: SELECT * FROM D WHERE A4 = 0
AND A1 = 1, because t7 is not returned by SELECT * FROM D

or SELECT * FROM D WHERE A4 = 0.

Then, from the tuples returned by q′ which are ranked higher

than t, we choose the one which has the most common attribute

values with t′, and use it as the next stop in the random walk. Note

that a special case arises when t is the highest-ranked tuple returned

by q′. In this case, we use the parent of q′ (by removing the last-

added predicate) to find the next stop.

Restart of Random Walks: We now consider the case where the

random walk reaches a node tbi that is not directly dominated by

t′. An obvious condition for restarting the random walk is when tbi
indeed directly dominates t′ - a clear evidence of overshooting the

target. However, if we only restart the random walk in this case,

it is still possible for a long (yet wasteful) random walk to con-

tinue despite of reaching tuples that far outrank yet are not directly

comparable with t′. To address this problem, we make two impor-

tant observations from real-world experiments: (1) a correct bridge

very rarely involves more than a few (e.g., 2) tuples, and (2) there

are a large number of such “short bridges”. Thus, a more effective

approach is to proactively restart a random walk (and hopefully hit

one of the many other short bridges) instead of continuing on to a

long path that is likely to have already outranked t′.
Based on these two observations, we introduce our strategy of

proactively restarting a random walk. A key idea here is that, in-

stead of directly limiting the length of a random walk, we instead

place a upper bound cN on the number of new tuples involved in a

random walk (i.e., which were never included in previous random

walks). This ensures the correct discovery of a bridge in the worst-

case scenario where even the shortest bridge has a long length. As

we shall show in §7, we found through real-world experiments that

cN = 3 is often the optimal setting for hidden databases in practice.

4.3 Algorithm RANK­EST­S
Algorithms 1 and 2 depict the pseudocode of Algorithm LV-

RANK-COMPARE and its usage in Algorithm RANK-EST-S, our

sampling-based rank estimation algorithm, respectively. Note that

in LV-RANK-COMPARE, we simultaneously build bridges from t
and t′, respectively, in order to enable rank comparison no matter

which tuple is ranked higher.

Before concluding the section, we would like to note how LV-

RANK-COMPARE compares against RANK-COMPARE. Note that,

with the breadth-first scheme, RANK-COMPARE always identifies

the shortest bridge from t to t′. Such an exhaustive search is un-

necessary when any valid bridge would suffice. The randomized

algorithm LV-RANK-COMPARE instead aims to quickly identify

the most likely path from t to t′ which can serve as a bridge, thereby

significantly reducing the query cost.

Algorithm 1 LV-RANK-COMPARE

1: Input : t and t′, the tuples to be compared

2: loop

3: Set tb0 = t , tc0 = t′ , l = 1
4: repeat

5: Choose tbl randomly from D(tbl−1)
6: Choose tcl randomly from D(tcl−1)
7: return t if t ≻ tcl, or t′ if t′ ≻ tbl
8: until bridges tb0 . . . tbl and tc0 . . . tcl has c unseen tuples

9: end loop

Algorithm 2 RANK-EST-S

1: Input : t , qF
2: Take a random sample S from Sel(qF)
3: n = Estimate of size of D from S
4: c = number of tuples in S that outrank t
5: return c

|S| ∗ n

5. CHALLENGE 2: HANDLING HIGHLY

RANKED TUPLES
We now consider how to enable rank discovery for highly ranked

tuples (when the ranking function is either proprietary or observ-

able). We start by describing a deterministic solution RANK-COMPUTE,

before introducing a randomized algorithm RANK-EST-H with a

significantly lower query cost. As we show in §7, RANK-EST-H

is the algorithm of choice for as much as top 25% of the database

(after which RANK-EST-S becomes competitive).

5.1 RANK­COMPUTE
Before introducing RANK-COMPUTE, we would like to first

note that, while the concept of direct domination relationship was

introduced in §2 for proprietary ranking functions, it readily applies

to observable ones as well. Even though direct domination rela-

tionships (or chains of them) are no longer needed for comparing

observable ranks, the concept is still important for understanding

how to retrieve tuples that outrank the input, as we show below.

To count the rank of t, we have to consider two types of tuples:

those in D(t) - i.e., directly dominating t - and those that outrank

t but are not directly comparable with t, which we denote to as

Di(t). RANK-COMPUTE crawls all tuples in D(t) and Di(t) in

an iterative fashion - i.e., it starts by computing D(t), followed by

computing D(·) for each tuple in D(t), and does so iteratively until

no new tuple is found. One can see that the key challenge here is to

efficiently compute D(·) - which we address next.

Computing D(t): As mentioned in §2.3, a baseline method for

computing D(t) is to issue all (m
0
)+· · ·+(m

m
) = 2m queries which

match t. To reduce the large query cost of 2m, we consider a query-

issuing strategy described as follows: First, we organize these 2m

queries into a lattice structure - an example of which (when t = t7
in the running example) is shown in Figure 3. One can see that

the root of the lattice is SELECT * FROM D, while the bottom

is the fully specified, m-predicate, query. Each node on Level-i
represents a query with i conjunctive predicates (all matching t).

SELECT *

A3=0

A3=A4=0

A3=A4=A5=0

A5=0

A4=A5=0

Running example when projected
to attributes A3, A4, A5 (k = 2)

query that returns t7

query saved by early termination

query saved by history inference

Figure 3: Illustration of Lattice and Two Ideas

Instead of issuing all 2m queries in the lattice, as in the baseline,

we reduce the query cost according to two key ideas. One is early

termination - i.e., if a query q in the lattice returns t, then we do

not need to issue any (lower-level) successors of q because any tu-

ple returned by these queries which ranks higher than t must also

be returned by q. In the running example depicted in Figure 3, no

descendants of A5 = 0 needs to be issued according to early termi-

nation, because A5 = 0 already returns t7.

The next cost-saving strategy is history inference. Note that this

includes not only the simple leverage of historic queries - i.e., do

not issue a query if it has been issued before - but also the non-

trivial inference of a query answer from a collection of historic

queries. Specifically, consider the case where, before issuing a

query q, we have already obtained answers to all predecessors of

q in the lattice (i.e., queries on the path between the root and q)

and, among the returned tuples, at least k of them match q. In this

case, we do not need to issue q because it is impossible for it to

return any tuple we have not yet seen. For example, in Figure 3 we

do not need to issue A3 = 0 due to history inference, because the

root SELECT * FROM D returns t1 and t2 which have A3 = 0.

Algorithm 3 RANK-COMPUTE

1: Input: t; Output: r(t)
2: H(t) = { D(t) } (set of tuples ranked higher than t)
3: repeat H(t) = H(t) ∪ D(t′) ∀t′ ∈ H(t)
4: until no new tuples added to H(t)
5: return |H(t)|+ 1

Leveraging both ideas, RANK-COMPUTE collects D(t) by per-

forming a breadth-first search (BFS) of the lattice. In the design of

lattice-BFS, we skip any query that can be inferred from history,

and invoke early termination if reaching a node that returns t.

Theoretical Analysis: Algorithm 3 depicts the pseudocode of RANK-

COMPUTE. The following theorem provides an upper bound on

the query cost of RANK-COMPUTE.

THEOREM 5.1. The worst-case query cost for RANK-COMPUTE

to compute r(t), i.e., the rank of a tuple t, is r(t) ·
(

m
⌊m/2⌋

)

.

We do not include the proof of this theorem due to space limita-

tions. Note that, for computing D(t), RANK-COMPUTE requires

Algorithm 4 RANK-EST-H

1: Input : t , qF
2: Randomly drill down on query lattice augmented with qF for t

until some query node Nq returns t
3: D(t) = set of tuples returned by ancestors(Nq) and dominate t
4: return

∑

ti∈D(t)
1

p(ti)

at most (m
m/2

) = O(2
√
m·logm/2) queries - a significant reduction

from the 2m queries required by the baseline method. For example,

when m = 12, the query-cost is reduced from 4,096 to 924.

5.2 RANK­EST­H: A Randomized Algorithm
Even though RANK-COMPUTE requires much fewer queries

than the baseline method, it can still generate excessive query cost

when either m or r(t) is large. For example, the upper bound de-

rived in Theorem 5.1 exceeds 25,200 queries for a 100-th ranked

tuple in a 10-attribute database. This can be attributed to : (1) the

iterative process for computing Di(t) (tuples that outrank but are

not directly comparable with t), as many tuples are repeatedly re-

trieved in this iterative process, and (2) the actual crawl of all tuples

in D(t) and Di(t), when only COUNT is required by rank estima-

tion. We address these two problems respectively as follows.

For the computation of Di(t), a key observation here is that the

higher ranked t is, the smaller |Di(t)| is likely to be. To under-

stand why, recall from §2 that in order for two tuples t and t′ to be

not directly comparable with each other, the most concrete query q
which matches both tuples must not return either of them. One can

see that clearly, the higher ranked t and t′ are, the less likely it is

for q to return neither of them. Thus, |Di(t)| is likely to be small

for a highly ranked input tuple t. This can be observed from the

running example - for the highest ranked 6 tuples t1, . . . , t6, Di(·)
are all zero. On the other hand, the 8-th ranked tuple t8 has 3 tuples

(i.e., t4, t5, t6) in Di(t8).
This key observation leads us to a simple yet (somewhat) crude

way of estimating r(t): crawl the lattice structure to retrieve all tu-

ples in D(t), and then use |D(t)| as an estimation for r(t). Nonethe-

less, the second problem (i.e., crawling D(t) when only COUNT

is required) remains. To address this problem, our main idea is to

enable an efficient estimation of |D(t)| by performing a random

drill-down from the top of the lattice as depicted in Figure 4 - i.e.,

starting from the root, we choose a branch uniformly at random,

and then repeat this process to “drill down” deeper into the lattice

in order to sample each tuple dominating t with a positive proba-

bility. Figure 4 depicts examples of drill downs for the lattice of t5
in the running example when projected to attributes A1, A2, A3.

SELECT *

A1=1

A1=A2=1

A1=A2=A3=1

A3=1

A2=A3=1

Running example when projected
to attributes A1, A2, A3 (k = 2)

query that returns t5
A2=1

drill-down path 1

query that does not return t5

drill-down path 2

drill-down path 3

drill-down path 4

Figure 4: Examples of Drill Downs

Let t1, . . . , tw be the tuples retrieved during this drill down which

directly dominate t. One can see that, by applying the Horvitz-

Thompson estimator [12], an unbiased estimate for |D(t)| is
∑w

i=1

1/p(ti), where p(ti) is the probability for ti to be picked up by

such a random drill-down process, because its expected value

E

[

w
∑

i=1

1

p(ti)

]

=
∑

t′∈D(t)

(

p(ti) ·
1

p(ti)

)

= |D(t)|. (2)

Unfortunately, computing p(ti) proves to be challenging because

a tuple directly dominating t may be returned by multiple drill-

down paths. For example, in Figure 4, t4 in the running example

may be returned by drill down paths 2, 3 and 4. In addition, note

that different drill-down paths are taken with different probability

- e.g., while path 2 in Figure 4 is taken with probability 1/3, path

3 is take with only 1/6 probability. As such, one may not be able

to precisely compute p(ti) without issuing additional queries after

the drill-down process.

To address this challenge, we consider the following heuristics:

if, during the current drill down, tuple ti is first returned at Level-h
of the lattice7, then we assume that all other nodes at Level-h which

match ti also return ti - and no node above Level-h returns it. With

this heuristics, we now compute an estimation of p(ti) as follows.

Note that the probability for the random drill-down process to reach

an h-th level node is 1/(m
h
). Thus, for a tuple ti which shares the

same value as t on c attributes (note that c ≥ h due to the lattice

definition), we have p(ti) ≈
(

c
h

)

/
(

m
h

)

.

For example, in Figure 4, when we retrieve t4 at the Level-1

node A2 = 1, the estimate8 of p(t4) ≈ (2
1
)/(3

1
) = 2/3. One can

see that we can now estimate |D(t)| accordingly. For example, if

we happen to take drill down path 2 in Figure 4, our estimation for

D(t5) is D(t) ≈ 2/1+1/(2/3) = 3.5, leading to a rank estimation

of 4.5 for r(t5). Note that we may repeat the random drill down for

multiple times (and take the average of estimations) to improve the

estimation accuracy for |D(t)|.

6. ALGORITHM RANK­EST
In this section, we start by describing our final RANK-EST al-

gorithm. Then, we tackle two theoretical issues, (1) the possible

discrepancy between real and revealed ranks, and (2) the hardness

of exact rank computation, respectively.

6.1 Description of RANK­EST
Interleaving: From the previous discussions, one can see that the

RANK-EST-S and RANK-EST-H have complementary behavior -

i.e., RANK-EST-S works poorly for highly ranked tuples, which

RANK-EST-H specifically address. We now consider the integra-

tion of these two algorithms to produce RANK-EST which work

universally for all tuples in the database. Our main idea is to in-

terleave the two algorithms. In particular, we first take a pilot

sample of the hidden database and use RANK-EST-S to produce

a (roughly) estimated rank. If the confidence interval of the es-

timation falls below a threshold9, then t likely has a high rank -

thus we switch to RANK-EST-H. Otherwise, we continue with the

sampling process in RANK-EST-S to reduce the estimation error.

Extension to other qF: So far, we focused on the case where

the user-specified filtering query qF in Definition 2 is SELECT *

FROM D. We now consider the extension to other qF for RANK-

EST-S and RANK-EST-H, respectively. Note that, for RANK-EST-

S, there is indeed no revision required for handling other qF, as

7Let the root level be Level 0.
8where c = 2, m = 3, and h = 1. Note that m = 3 because the
lattice represents a projection to A1, A2, A3. c = 2 because t4 and
the input t5 have two attributes in common among A1, A2, A3.
9e.g., for a 95% confidence interval r(t) ∈ [u, v], if v < ℓ where ℓ
is the pre-determined threshold

long as the sampling algorithm we call as a subroutine only gener-

ates samples that satisfy qF. Then, by calling on existing aggregate

estimation algorithms (e.g., [8]) to estimate the COUNT of tuples

satisfying qF, we can readily generate the rank of a tuple within qF.

For RANK-EST-H, a simple revision is required - in Algorithm 4,

when computing D(t), i.e., the set of tuples returned during drill-

down which dominate t, we only include those tuples in D(t) that

satisfy qF. With the revision, the estimation we generate is for the

number of tuples in D(t) matching qF. Note that, if qF happens

to be a conjunctive query that can be specified through the top-k
interface, then it is possible to further improve the efficiency of

RANK-EST-H by appending the predicates in qF to every query in

the lattice (on which we perform the random drill-downs, as shown

in Figure 4). This way, all queries issued by RANK-EST-H are

focused on tuples matching qF, leading to a reduced query cost.

Algorithm 5 depicts the interleaved RANK-EST generic to qF.

Algorithm 5 RANK-EST

1: Input : t , qF Output : r̃(t)
2: Fetch pilot sample S from Sel(qF)
3: r̃c(t) = Approximate rank estimated by RANK-EST-S(t, qF)

4: if confidence interval of r̃c(t) < threshold then Estimate

r̃(t) through RANK-EST-H(t, qF)

5: else Continue estimation of r̃(t) through RANK-EST-S(t, qF)

6.2 Closeness of Real and Revealed Ranks
To understand why a tuple’s true rank might differ from what

is revealed through the top-k interface, consider a database of two

Boolean attributes and three tuples: t1 : 〈0, 1〉, t2 : 〈0, 0〉, and

t3 : 〈1, 1〉, with t1 and t3 having the highest and lowest rank, re-

spectively, according to a hidden ranking function. One can see

that, if the database has a top-1 interface, then it is impossible to

determine which of t2 and t3 ranks higher, because the only query

that matches both tuples, i.e., SELECT * FROM D, returns nei-

ther. This example illustrates that, while the true rank of t3 should

be 2 (because two tuples rank higher than it), the best estimation

one can make from the top-k interface is 1 - leading to a significant

difference between the two values.

Fortunately, we found through theoretical analysis and experi-

mental studies that such a difference is usually extremely small to

non-existent in real-world hidden databases, mainly because of two

reasons. First, real-world databases often feature a much larger k
(than 1), revealing a lot more information about the rank compar-

ison between different tuples. Second, there are often many more

attributes, making it unlikely for two highly ranked tuples to be

incomparable with each other. The following theorem uses a spe-

cial case to illustrate the extremely small value of the difference.

We shall further evaluate such a difference value with real-world

datasets in the experiments section.

THEOREM 6.1. Consider a database with m attributes, each

of which is generated i.i.d. with uniform distribution over a do-

main size of c. For a tuple t with real rank r and top-k-interface-

revealed-rank r′, there is Pr{|r− r′| > ǫ} < p · (2p)ǫ−1, where p
is upper-bounded by: (note that erf(·) is the error function)

m
∑

i=0

[

(m

i

)

· (c− 1)m−i

cm
·
(

1−
k−1
∑

j=0

(

r

j

)

· (c
i − 1)r−j

ci·r

)]

≤
m
∑

i=0

[

(

m
i

)

· (c− 1)m−i

2cm
·
(

1− erf

(

(k − 1) · ci/2 − r

ci
√

2r(ci − 1))

))]

We do not include the proof here due to space limitations. One

can see from the theorem that, the larger k is or the smaller m
and r are, the smaller the probability for |r − r′| > ǫ will be -

irrelevant of how many tuples the database contains. Specifically,

for a 15-attribute database with k = 100, the largest (i.e., worst-

case) probability for any tuple (with arbitrary r) to have a relative

rank difference of 2% (i.e., |r−r′| > 0.02·r) is lower than 0.00058

- indicating that the top-k interface likely reveals a very accurate

rank for each tuple in the database.

6.3 Hardness Results
We now consider the hardness of rank comparison and compu-

tation for a hidden web database. Recall the query lattice defined

in §4. When there is a large number of attributes in the database,

the query cost of rank comparison/computation can be very high

if it requires the enumeration of queries at the middle level (i.e.,

⌊m/2⌋-th level) of the lattice - because this middle level contains

the most queries (i.e., [m
m/2

]). To understand how rank compar-

ison/computation may require issuing such middle-level queries,

consider an example where one needs to compute the rank of a

given tuple t which has such a low rank that it is not returned by

any query above the ⌊m/2⌋-th level in the lattice. Note that, unfor-

tunately, this scenario can happen even when the database is very

small - with as few as m/2 + 1 tuples, as we shall show in the

proof. In this case, to determine if there is a tuple t′ which (1)

shares the values of A1, . . . , Am/2 with t and (2) directly domi-

nates (or is directly dominated by) t, one has no choice but to is-

sue SELECT * FROM D WHERE A1 = t[A1] AND · · · AND

Am/2 = t[Am/2] because:

• any query with fewer predicates would not help to determine

if t ≻ t′, because t is not returned by such a query

• any query with more predicates would not help because it

does not match t′.
Intuitively, one can see that such a scenario may force the issuing

of all queries in the middle level of the lattice.

THEOREM 6.2. (Hardness of Rank Comparison) Given two

comparable tuples t and t′, no algorithm can guarantee correct

comparison with o(m
√
m/2) queries.

We do not include proof here due to space limitations. One can

see that the theorem precludes the existence of efficient determin-

istic algorithms for rank comparison when there is a large number

of attributes (e.g., when m
√
m/2 ≫ n). The following corollar-

ies further eliminate the possibility of having a worst-case-efficient

algorithm for computing the exact rank of a given tuple, or even ap-

proximating the rank with a deterministic error bound, when there

is a large number of attributes in the database and/or the attribute

domain sizes are unbounded. However we show in §7 that our ran-

domized algorithms LV-RANK-COMPARE and RANK-EST usu-

ally requires far fewer queries for real-world datasets.

COROLLARY 6.2.1. (Hardness of Obtaining the Exact Rank)

For a given tuple t, no algorithm can guarantee the computation

of the rank of t with o(m
√
m/2) queries. If the domain sizes of

attributes are sufficiently large, no algorithm can guarantee rank

computation with o(m
√

m/2 + nn) queries.

COROLLARY 6.2.2. (Hardness of Rank Approximation) For

a given tuple t, no algorithm can generate a value v such that the

rank of t is guaranteed to be in [v, v · r] with o(m
√

m/2 −√
m · r)

queries. If the domain sizes of attributes are sufficiently large, no

algorithm can do so with O(m
√
m/2 + nn −√

m · r) queries.

10 25 50 75 100
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

K

P
ro

b
a
b

il
it

y
 (

lo
g

 s
c
a
le

)

 0.001 (YA)

 0.01 (YA)

 0.001 (BI)

 0.01 (BI)

Figure 5: Rank Discrepancy

10 25 50 75 100
−12

−10

−8

−6

−4

−2

0

K

P
ro

b
a
b

il
it

y
 (

lo
g

 s
c
a
le

)

Pr(Incomparable tuples)

Pr(Directly Comparable tuples)

Pr(Incomparable tuples, =0.01)

Figure 6: Comparability of Tuples

1−10K 10−25K 25−50K 50−100K 100−180K
0

0.5

1

1.5

2
x 10

4

Rank Bin

Q
u

e
ry

 C
o

s
t

RANK−EST−S

RANK−EST−H

RANK−EST

RANK−COMPUTE

GET−NEXT

Figure 7: Varying Input Rank (RE)

20 40 60 80 100
0

1

2

3

4

K

Q
u

e
ry

 C
o

s
t

(l
o

g
 s

c
a
le

)

LV−RANK−COMPARE (YA)

LV−RANK−COMPARE (BI)

Figure 8: Varying k (RC)

1−10K 10K−20K 20−30K 30−40K 40−50K0

50

100

150

Rank of Higher Ranked Tuple

Q
u

e
ry

 C
o

s
t

Rank Difference=10K

Rank Difference=25K

Rank Difference=50K

Figure 9: Varying Input Rank (RC)

20 40 60 80 100 120 140 160 180 5K 10K
0

200

400

600

800

1000

Dataset Size(Thousands)

Q
u

e
ry

 C
o

s
t

LV−RANK−COMPARE (YA, m=20)

LV−RANK−COMPARE (YA, m=35)

LV−RANK−COMPARE (BI, m=100)

Figure 10: Varying n (RC)

10 20 30 40 50 100
0

1000

2000

3000

4000

K

Q
u

e
ry

 C
o

s
t

RANK−EST−S

RANK−EST−H

RANK−EST

Figure 11: Varying k (RE)

20 25 30 35
0

500

1000

Number of Attributes

Q
u

e
ry

 C
o

s
t

RANK−EST−S

RANK−EST−H

RANK−EST

Figure 12: Varying m (RE)

7. EXPERIMENTAL RESULTS

7.1 Experimental Setup
Hardware and Platform: All our experiments were performed on

a quad-core 2 GHz AMD Phenom machine with 8 GB of RAM.

The algorithms were implemented in Python.

Offline Datasets: Our primary dataset consists of data crawled

from the Yahoo! Autos (YA)10, a real-world hidden database. It

contains 200,000 used cars for sale in the Dallas-Fort Worth metropoli-

tan area. There are 32 Boolean attributes such as A/C, Power

Locks, etc, and 6 categorical attributes, such as Make, Model, etc

whose domain size range from 5 to 16. We also tested our algo-

rithms over a synthetic boolean dataset (BI) of 10 million tuples

and 100 attributes for scalability purposes. The tuples are gener-

ated as i.i.d. data with each attribute having probability of p = 0.5

to be 1. Since neither dataset comes with a ranking function, we

produce a synthetic static ranking for each dataset by first gener-

ating a random permutation of all tuples in a dataset, and then use

each tuple’s position in the permuted list as its rank. Default value

for k is 100. Our charts primarily report the results over for Ya-

hoo! Autos (unless otherwise specified).

Online Real-World Experiment: We also tested our algorithms

online via Amazon.com’s Product Advertising API11 that reveals a

top-100 interface where the items are ordered by a proprietary rank-

ing function based on sales rank. The actual rank is not revealed by

default. To uncover the ground truth, we found that the individual

item description provided by Amazon.com reveals the sales rank of

certain items12. As such, we chose all testing tuples from those that

have its real rank disclosed in the description. Specifically, we fo-

cused on Amazon’s DVD and book items, and constructed search

queries using 15 categorical attributes such as Actor, Artist, etc.

Amazon.com has a limit of 2,000 queries per IP address per hour.

Algorithms: We tested 4 algorithms for rank estimation considered

in the paper: RANK-COMPUTE, RANK-EST-S, RANK-EST-H

and RANK-EST. Since, RANK-EST-S uses algorithm LV-RANK-

COMPARE for rank comparison, we also perform a rigorous set

of experiments to evaluate it. For RANK-EST-S and RANK-EST,

10
http://auto.yahoo.com

11
https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html

12
Many others, e.g., item No. B009B0JR2C, do not reveal the rank at all.

we used the existing HIDDEN-DB-SAMPLER [7] for the sampling

primitive. We also tested as baseline the direct usage of an existing

algorithm GETNEXT [19] for rank computation. Since GETNEXT

is only capable of obtaining the (h + 1)-th ranked tuple based on

the top-h tuples, to use it for rank computation we ran the algorithm

repeatedly until reaching the input tuple.

Performance Measures: For all algorithms, we measure efficiency

through query cost. In addition, we measure the accuracy of rank

estimation through the relative error measure defined in §2.4.

7.2 Experimental Results
In this subsection, we first empirically evaluate the discrepancy

between real and revealed ranks. Then we describe the results of

our offline experiments over Yahoo! Auto dataset and online exper-

iments at Amazon.com for the rank estimation problem.

Empirical Evaluation of Rank Discrepancy and Tuple Compa-

rability : Recall that our aim is to estimate the revealed rank of

a given tuple. We observed that problem of discrepancy between

real and revealed is exceedingly unlikely in practice. For each tu-

ple in both datasets, we computed its revealed rank using RANK-

COMPUTE algorithm and compared the relative error between the

real and revealed ranks. Figure 5 shows the fraction of tuples that

had a rank discrepancy of 0.1% and 1% (or above) for different

values of k. For k = 100 (a fairly common value), less than 400

tuples out of 200,000 tuples had a rank discrepancy of 1%. This

justifies our problem definition in terms of revealed rank and that

rank discrepancy is not a big issue in real-world databases.

Figure 6 shows the feasibility of rank comparison problem over

Yahoo! Autos dataset. The results for Bool-IID dataset was similar.

Note that the probability of finding a pair of tuples that are not

comparable is exceedingly low (≈ 10−7 for k = 100). Further, the

fraction of tuple pairs that are directly comparable varies between

10-20% and increases with larger values of k. It shows that while

almost all pair of tuples are comparable only a fraction of them are

directly necessitating practical algorithms. Finally, we identify the

fraction of pairs of tuples that have a relative rank difference of 1%

(e.g. when tuples ranked 990th to 1010th were compared with the

1000th-ranked tuple). Intuitively, these are the hardest pairs to test

as with larger rank difference, the chance of identifying a bridge

dramatically increases. We observed that even for this restrictive

scenario, only a minuscule fraction of tuples remain incomparable.

0.1 0.25 0.5 1
0

1000

2000

3000

Relative Error

Q
u

e
ry

 C
o

s
t

RANK−EST−S

RANK−EST−H

RANK−EST

Figure 13: Tradeoff (RE)

20 40 60 80 100
0

500

1000

1500

2000

K

Q
u

e
ry

 C
o

s
t

Selectivity=1.0

Selectivity=0.8

Selectivity=0.5

Selectivity=0.2

Figure 14: Varying Selectivity of qF

2 3 4 5
0

200

400

600

800

Length Of Random Walk

Q
u

e
ry

 C
o

s
t

Yahoo Autos

Bool−IID

Figure 15: Varying cN (RC)

1−10K 10−25K 25−50K 50−100K 100−180K
0

1000

2000

3000

Rank Bin

Q
u

e
r
y
 C

o
s
t

Both Heuristics

History Inference only

Early Termination only

Figure 16: Impact of Heuristics on

Query Cost (RE)

Comparison of Rank Estimation Algorithms: We start by com-

paring our algorithms with GETNEXT [19] while varying the rank

of the input tuple between 1 and 180,000. Figure 7 depicts the (av-

erage) query cost required to achieve a relative error of 10% on rank

estimation. The query cost of GETNEXT is only plotted for input

rank [1, 10000] as it becomes prohibitive for lower ranked tuples.

We also evaluated our deterministic algorithm RANK-COMPUTE.

While this algorithm is much more efficient that GETNEXT, its

query cost rapidly increases with the tuple’s rank and becomes pro-

hibitive. One can also observe from the figure that, as discussed

in §5, RANK-EST-S works better for lowly ranked tuples, while

RANK-EST-H works better for highly ranked ones. By interleav-

ing the two, RANK-EST works effectively for tuples of all ranks.

Given the excessive query cost of RANK-COMPUTE, we only

focus on the practical algorithms RANK-EST, RANK-EST-S and

RANK-EST-H for comparative analysis.

Rank Comparison: We start by evaluating the efficacy of of our

Las Vegas algorithm, LV-RANK-COMPARE. Specifically, we ran-

domly selected two tuples with rank between 42,000 and 44,000,

and measured the query cost of comparing them while varying k
between 10 and 100. One can see from Figure 8 that, LV-RANK-

COMPARE is extremely practical and identifies the correct com-

parison rapidly. Notice that the query cost decreases rapidly as k
increases as more and more tuples becomes directly comparable.

We tested the performance of LV-RANK-COMPARE while vary-

ing the ranks of input tuples. Figure 9 depicts the results when the

rank difference between the two input tuples varies from 10,000

to 50,000, while the higher-ranked tuple is randomly selected from

one of the five rank-buckets ranging from [1, 10000] to [40001,

50000]. One can see from the figure that, consistent with intuition,

our algorithm requires fewer queries when the ranks of input tuples

are further apart. In addition, the performance of our algorithm is

not significantly affected by the absolute rank of the input tuples.

We also tested the scalability of LV-RANK-COMPARE by vary-

ing n, the number of tuples, and m, the number of attributes. To do

so, we sample tuples and attributes uniformly at random (without

replacement) from both datasets. One can see from Figure 10 that

our query cost increases slowly with n. Note that the jump at the

right side of the figure is because we include at the end of x axis

the results for Bool-IID when the dataset contains 5 or 10 million

tuples - demonstrating the scalability of LV-RANK-COMPARE. In

addition, our query cost actually decreases with a large m. The

reason for the latter is that, when m is larger, the number of tu-

ples directly comparable with t also increases - leading to a higher

probability of bridge construction by LV-RANK-COMPARE.

Rank Estimation: Similar to Figures 8 and 10 for rank compari-

son, we tested the performance of our rank estimation algorithms

against varying k, n and m. All these figures depict the num-

ber of queries required for reaching a relative error of 10% for

rank estimation. For Figure 12, we randomly chose the input tu-

ples for RANK-EST-H and RANK-EST-S from rank-bucket [10K,

20K] and [50K, 100K], respectively. For RANK-EST, we ran-

domly chose the input from the entire database. From Figures 11

and 12 that, our algorithms require fewer queries when k or m is

larger. Figure 13 further depicts the tradeoff between query cost

and the relative error of rank estimation. We also tested the impact

of selectivity of different queries qF . We constructed the filtering

queries by first randomly deciding the total number of attributes in

qF which (along with their values) are then chosen randomly. We

then chose an arbitrary tuple from Sel(qF) and estimated its rank

within it. The results for different queries with varying level of

selectivity are provided in Figure 14. As expected, when queries

become highly selective, the query cost to estimate its rank drops.

Impact of Heuristics: We now compare the effectiveness of the

heuristics used in our algorithms based on their impact over query

cost. Note that the accuracy of estimated ranks is not affected by the

heuristics being used, because the heuristics are used inside the LV-

RANK-COMPARE subroutine which always produces the correct

rank comparison. The heuristics that are used inside RANK-EST

(early termination and history inference), reduce the query cost by

allowing us to compute the output of some queries locally from

previously executed query results. Thus, all our heuristics reduce

the query cost without affecting the output of our algorithms.

For LV-RANK-COMPARE, we tested our parameter setting for

cN - i.e., the upper bound on the length of a random walk before

triggering proactive restart. Figure 15 shows the justification for

our heuristics of cN = 3 for both datasets. We observed similar

result in our online experiments also. As discussed in §5, further

increasing cN leads to a higher query cost because, when the ran-

dom walk “overshoots” the destination, it takes longer to restart

before finding one of the many short bridges.

For RANK-EST, we tested how the heuristics - early termina-

tion and history inference affect the query cost. We can observe

from Figure 16 that both heuristics result in a substantial reduc-

tion of query cost. For highly ranked tuples, the impact is more

pronounced as RANK-EST-H uses them extensively.

Online Experiments at Amazon.com: Before presenting the re-

sults of our online experiments, we would like to note that Ama-

zon’s interface provides no efficient way to crawl a large number

of lowly ranked tuples without exceeding the query allowance. As

such, for the purpose of our experiments, we focused on tuples with

rank between 1 and 15,000. Figure 17 shows the results. We first

tested our LV-RANK-COMPARE algorithm by randomly selecting

two tuples with rank difference varying between 1,000 and 5,000.

We can see that our algorithms require fewer than 100 queries for

rank comparison. For rank estimation, we can observe that our

RANK-EST algorithm requires fewer than 400 queries - far below

the hourly limit of 2,000 queries imposed by Amazon - to reach

an estimation error of 10%. In addition, the pattern of query-cost

change with input rank is consistent with the offline case. Inter-

estingly, RANK-EST-H consistently outperforms RANK-EST-S in

1 2 3 4 5
0

20

40

60

80

Rank Difference (in thousands)

Q
u

e
ry

 C
o

s
t

LV−RANK−COMPARE

0−1K 1K−2K 2K−5K 5−10K 10K−15K0

200

400

600

800

Rank Bin

Q
u

e
ry

 C
o

s
t

RANK−EST−S

RANK−EST−H

RANK−EST

Figure 17: Rank Comparison and Estimation at Amazon.com

our online experiments - indicating that the rank-bucket [1, 15000]

we were able to use is still (relatively) highly ranked in the large

Amazon database. It is also important to note that our final RANK-

EST algorithm only has a slightly higher query cost than RANK-

EST-H, indicating our algorithm’s ability to quickly switch from

RANK-EST-S when the input tuple is highly ranked.

8. RELATED WORK
Data Analytics over Hidden Databases: There has been prior

work on crawling, sampling, and aggregate estimation over the hid-

den web, specifically over text [3, 4] and structured [16] hidden

databases and search engines [15, 18, 2]. Specifically, sampling-

based methods were used for generating content summaries [6, 14,

11], processing top-k queries [5], etc. Prior work (see [8] and refer-

ences therein) considered sampling and aggregate estimation over

attribute values explicitly returned by the web interface of the struc-

tured hidden database. Our work, on the other hand, considers rank

information of tuples which is not explicitly returned, thereby pre-

cluding the applicability of prior work. Our paper differs from top-

k processing (see [13] for a survey) as our paper aims to discover

rank-related information from the top-k answers, instead of study-

ing how th e top-k answers can be retrieved.

Retrieving Rank Information from Hidden Databases: GET-

NEXT operator [19] allows an ordered crawling of top ranked tuples

for any static ranking function. Specifically, given all tuples ranked

in top-(h-1) as input, GETNEXT operator retrieves the No. h ranked

tuple. While [19] solves the problem of retrieving top-h tuples over

a top-k interface (where h > k), our paper initiates the first formal

study on efficiently estimating the rank of any given tuple in a hid-

den web database. Admittedly, it is possible to use GETNEXT in

a brute-force way to solve the rank computation problem - i.e., by

retrieving all tuples ranked higher than the input tuple in an itera-

tive fashion. However, such an approach is prohibitively expensive

for all but the highly ranked tuples. Further, it produces an exact

rank whereas for a number of scenarios as outlined in §1, approx-

imate rank with low query cost is preferable. Suggestion sampling

[3] estimates the frequency of search queries from ranked lists re-

turned by a search engine’s prefix-matching auto-complete inter-

face. Unlike [3], we consider the retrieval of rank information from

a structured hidden database with a form-like interface.

9. FINAL REMARKS
In this paper, we defined a novel problem of rank discovery from

hidden web databases with restrictive top-k search interfaces. We

first introduced a taxonomy of ranking functions according to mul-

tiple dimensions, discussed the feasibility of rank discovery for

each type of ranking function, and described solutions for all the

feasible types. We proposed RANK-EST, a randomized algorithm

for efficient rank discovery for proprietary and observable ranking

functions. We proved hardness results that preclude the existence

of efficient deterministic algorithms. We demonstrated the effec-

tiveness of our proposed algorithms using real-world datasets and

also through an online experiment conducted over Amazon.com.

10. REFERENCES
[1] F. N. Afrati, P. V. Lekeas, and C. Li. Adaptive-sampling

algorithms for answering aggregation queries on web sites.

DKE, 64(2):462–490, 2008.

[2] Z. Bar-Yossef and M. Gurevich. Efficient search engine

measurements. In WWW, pages 401–410, 2007.

[3] Z. Bar-Yossef and M. Gurevich. Mining search engine query

logs via suggestion sampling. In VLDB, pages 54–65, 2008.

[4] K. Bharat and A. Broder. A technique for measuring the

relative size and overlap of public web search engines. In

WWW, pages 379–388, 1998.

[5] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k

queries over web-accessible databases. In ICDE, pages

369–380, 2002.

[6] J. Callan and M. Connell. Query-based sampling of text

databases. ACM TOIS, 19(2):97–130, 2001.

[7] A. Dasgupta, G. Das, and H. Mannila. A random walk

approach to sampling hidden databases. In SIGMOD, pages

629–640, 2007.

[8] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, and G. Das.

Unbiased estimation of size and other aggregates over hidden

web databases. In SIGMOD, pages 855–866, 2010.

[9] A. Dasgupta, N. Zhang, and G. Das. Leveraging count

information in sampling hidden databases. In ICDE, pages

329–340, 2009.

[10] A. Dasgupta, N. Zhang, and G. Das. Turbo-charging hidden

database samplers with overflowing queries and skew

reduction. In EDBT, pages 51–62, 2010.

[11] Y.-L. Hedley, M. Younas, A. E. James, and M. Sanderson.

Sampling, information extraction and summarisation of

hidden web databases. DKE, 59(2):213–230, 2006.

[12] D. Horvitz and D. Thompson. A generalization of sampling

without replacement from a finite universe. Journal of the

American Statistical Association, 47:663–685, 1952.

[13] I. Ilyas, G. Beskales, and M. Soliman. A survey of top-k

query processing techniques in relational database systems.

ACM Computing Surveys, 40:11:1–11:58, 2008.

[14] P. Ipeirotis and L. Gravano. Distributed search over the

hidden web: Hierarchical database sampling and selection.

In VLDB, pages 394–405, 2002.

[15] K. Liu, C. Yu, and W. Meng. Discovering the representative

of a search engine. In CIKM, pages 652–654, 2002.

[16] S. Raghavan and H. Garcia-Molina. Crawling the hidden

web. In VLDB, pages 129–138, 2001.

[17] C. Sheng, N. Zhang, Y. Tao, and X. Jin. Optimal algorithms

for crawling a hidden database in the web. In VLDB, pages

1112–1123, 2012.

[18] M. Shokouhi, J. Zobel, F. Scholer, and S. Tahaghoghi.

Capturing collection size for distributed non-cooperative

retrieval. In SIGIR, pages 316–323, 2006.

[19] S. Thirumuruganathan, N. Zhang, and G. Das. Breaking the

top-k barrier of hidden web databases. In ICDE, pages

1045–1056, 2013.

[20] F. Wang and G. Agrawal. Effective and efficient sampling

methods for deep web aggregation queries. In EDBT, pages

425–436, 2011.

