
Exploiting Group Recommendation Functions for Flexible Preferences

Senjuti Basu Roy ∗ , Saravanan Thirumuruganathan # , Sihem Amer-Yahia + , Gautam Das # , Cong Yu −

∗University of Washington Tacoma #University of Texas at Arlington, QCRI +CNRS, LIG −Google Research
senjutib@uw.edu,saravanan.thirumuruganathan@mavs.uta.edu,sihem.amer-yahia@imag.fr,congyu@google.com, gdas@uta.edu

Abstract—We examine the problem of enabling the flexibility
of updating one’s preferences in group recommendation. In our
setting, any group member can provide a vector of preferences
that, in addition to past preferences and other group mem-
bers’ preferences, will be accounted for in computing group
recommendation. This functionality is essential in many group
recommendation applications, such as travel planning, online
games, book clubs, or strategic voting, as it has been previously
shown that user preferences may vary depending on mood,
context, and company (i.e., other people in the group). Pref-
erences are enforced in an feedback box that replace preferences
provided by the users by a potentially different feedback vector
that is better suited for maximizing the individual satisfaction
when computing the group recommendation. The feedback box
interacts with a traditional recommendation box that implements
a group consensus semantics in the form of Aggregated Voting
or Least Misery, two popular aggregation functions for group
recommendation. We develop efficient algorithms to compute
robust group recommendations that are appropriate in situations
where users have changing preferences. Our extensive empirical
study on real world data-sets validate our findings.

I. INTRODUCTION
Group recommendation, i.e., recommending items to a

group of users based on individual users’ preferences, is an
active research topic [1], [2], [3], [4]. It is usually based
on aggregating individual users’ preferred items (typically
learned from past behavior/preferences) into a single list of
recommendations to a group using a consensus function. In
this paper, we are interested in a specific scenario where users
are provided the flexibility to update their preferences during
recommendation time by choosing items they would like or
not to see, and the system accounts for those newly provided
preferences to compute recommendations to the group. This
new feature is useful in a number of practical applications such
as travel planning, online games, and book clubs, or strategic
voting [5], where users are likely to be in a different mindset at
recommendation time and do not want the system to solely rely
on their past preferences. The flexibility offered by the ability
to update user preferences at recommendation time gives rise
to novel unexpected challenges.

In the case of trip planning, most tour buses impose a rigid
itinerary with pre-determined destinations and risk alienating
users. Consequently, tour organizers have expressed interest
in adjusting trips by incorporating current preferences of the
users, when traveling with others. As was shown in previous
work [4], reaching consensus between group members is an
important step in group recommendation. Previous studies
have shown that users’ mood, context and company, may
affect their preferences [6], [7] Oftentimes, users will like to
update their preferences consciously in an effort to maximize

their individual satisfaction, by understanding the preferences
expressed by other members in the group. For example,
an individual may notice that her most desired item is not
preferred by many of the other group members, and is thus
unlikely to be recommended to the entire group. In such a
situation, it may be worthwhile for the individual to abandon
her original preference and provide a new preference for items
that are also popular with the other users, which will result
in generating a group recommendation that satisfies her the
most. This seemingly intuitive idea - i.e., how to update one’s
preferences in order to maximize individual satisfaction in
group recommendation - turns out to be quite challenging to
solve, and our investigation of this problem is one of the main
contributions of this paper.

Therefore, we introduce a flexible feedback model in
the form of a vector of preferences that any group member
could provide at recommendation time. Next, we propose
a feedback box that outputs a feedback vector for each
group member such that her satisfaction is maximized in the
generated recommendation, given her current preferences, if
the generated feedback vector is used in the group recommen-
dation generation process.

Enabling preferences that can be updated poses unexpected
challenges to popular group recommendation consensus func-
tions [3] - such as Aggregated Voting and Least Misery. In fact,
it is not enough for the system to use collected preferences
from group members (some members may choose not to
provide any, and let the system only use their past preferences)
and produce new recommendations. Our feedback box will
replace the preference vectors provided by the users by a
potentially different feedback vector that is better suited for
helping users enforce their new preferences. As we shall
see next, traditional group recommendation functions, when
applied in conjunction with a feedback box, generate recom-
mendations that dramatically maximize the satisfaction of an
individual member (for whom the feedback box is invoked),
given her current preferences.
Example 1. Consider a 3-member group G = {u1, u2, u3}
and a set of 5 POIs in London: Buckingham Palace, London
Eye, Tower of London, London Dungeon, British Museum, out
of which an itinerary with 3 POIs are to be recommended to
G. Assume u1 prefers Buckingham Palace, Tower of London,
and London Dungeon, u2 prefers London Eye, Tower of
London, London Dungeon, but u3 wants to visit Tower of
London, London Dungeon, British Museum. We explain this
example using Least Misery which maximizes the minimum
satisfaction (see Section II for formal definition) of the users.

User satisfaction is measured using a simple form of Jaccard
Index [8], namely Overlap Similarity (see Section II-B2 for
details), which is the size of the overlap between the preferred
and the recommended POIs. A recommendation for G could
be Buckingham Palace, Tower of London, London Dungeon,
which contains 2 out of the 3-POIs u3 wants to visit. If
u3 uses the feedback box instead, it internally converts u3’s
preferences into British Museum only, which results in a
recommended itinerary to G having Tower of London, London
Dungeon, British Museum. It is easy to observe that, with the
help of feedback box u3 is more satisfied.

The above example shows that the preferences provided
by users at recommendation time may need to be converted
internally to maximize individual satisfaction when providing
the group recommendation1. This observation is at the core of
our work. Our first and foremost challenge is to determine the
best feedback vector, given the current preference of a user,
where “best” is defined as maximizing user’s satisfaction in
the generated recommendation. For the feedback box to work,
it has to take into account both recommendation semantics
(consensus function), and the latest user preferences.

While our proposed solutions are easily extensible to ordinal
or numerical preference model (Section V contains the details),
we present most of the results using the Boolean preference
model that is natural and easy to use [9], where the preference
of an user for an item is binary - either she likes it, or not.
Surprisingly, under the Boolean preference model, the task of
accounting for flexible preferences is technically challenging,
since the optimal recommendation generation problem itself is
NP-hard (as we prove) under most group recommendation and
user satisfaction semantics. We study the complexity of this
problem in-depth, and propose novel algorithms with provable
approximation factors. While the feedback box problem in
general is NP-hard (since it uses a recommendation subroutine
which itself is NP-hard), by assuming an oracle that can
compute group recommendations efficiently, we propose novel
efficient algorithms including a linear time optimal algorithm.

We realize that it can be disconcerting for existing users to
experience drastic changes to recommendations due to other
group members’ change in preferences. To alleviate that, we
introduce recommendation robustness, a key notion to ensure
that generated recommendations after preference updates over-
lap with the ones generated before. We formalize robustness in
group recommendation under changing preferences as a soft
constraint so that the recommendation system could tune that
parameter at its convenience. Most importantly, we empiri-
cally demonstrate that when multiple users use feedback box,
appropriately tuned recommendation robustness successfully
counterbalances the effect of feedback box, and still ensures
overall group satisfaction.

In summary, this paper makes the following technical con-
tributions:
• We motivate the need for a feedback box that enables

1if multiple users attempts to use the feedback box at the same
time, they are arbitrarily sequentialized.

flexible user preferences at recommendation time. We
develop a feedback box that computes, for each user
with updated preferences, the best feedback to provide
to maximize her satisfaction.

• We prove that the usefulness of the feedback box is
strictly related to specific group recommendation seman-
tics and study Boolean preference model in depth.

• We develop efficient algorithms to enable online group
recommendations for optimizing flexible user preferences
and recommendation robustness.

• We run extensive offline and online quality experiments
to validate the need for a feedback box, validate recom-
mendation robustness, and study the performance of our
algorithms using multiple real-world datasets.

Section II contains preliminaries. Algorithms for recommen-
dation generation in presence of a feedback box are developed
in Section III and Section IV. Non-Boolean preference mod-
els, recommendation robustness, experimental studies, related
work, and conclusion are presented in Section V, VI, VII, VIII
and IX respectively.

II. PRELIMINARIES

A. Interaction Model

To elicit preference, a user provides a Boolean vector
(Section V discusses extension to other feedback model),
where 1 corresponds to the items she prefers to consume,
and 0 otherwise. Feedback generation phase is followed next,
by invoking the feedback box for this user. During this
phase, the system, through the feedback box, computes for
the user a suggested boolean feedback vector, such that if the
suggested feedback is used instead of her current preference
she provided, the recommendation generated by the group
consensus function would also maximize her satisfaction. The
idea of replacing the provided preference with a suggested
feedback vector is the main distinction between our work and
other feedback-based semantics [9]. Next, the system analyzes
the feedback of each member of the group, and recommends
at most k items (k is a given budget) to the group2.

B. Data Model

A group G consists of a set of members {u1, u2, . . . , un}.
I = {i1, i2 . . . , im} is the set of items from which the
recommendation box has to suggest a set of at most k items.

1) User Preference Model: User preference is received in
the form of a vector of length m (should be read from left-to-
right) where the value at position j provides her user prefer-
ence for the corresponding item ij . We consider a boolean
preference model (where 1 stands for positive preference,
and 0 for negative) that it is natural for many applications,
especially when the user is not very knowledgeable about the
domain (Section V contains extensions).

2Under certain Boolean satisfaction measures, such as Hamming
Distance, it is possible that the group recommendation consensus
function is optimized with less than k items, even though the budget
is k. We explain these scenarios later on.

2

User Preference Vector: A preference vector under Boolean
model defines a subset of items that a user would like to
consume, and the ones she is not interested in. We denote the
preference of a user u by pref(u). As an example, the prefer-
ence vectors of two users u and u′ expressed over four items
that are Points of Interests (POIs) in Paris: “Eiffel Tower”,
“Jardin des Plantes”, “Musée d’Orsay” and “La Défense”, in
that order, could be pref(u) = 0111 and pref(u′) = 0011,
which convey the fact that the two users would like to visit
“Musée d’Orsay” and “La Défense” and not “Eiffel Tower”,
and disagree on “Jardin des Plantes.”

User Feedback Vector: Given pref(u) of a user u, given
an existing group G, the feedback box generates a Boolean
vector of length m for u, based on the optimization described
in Sections III and IV. This vector is the generated feedback
(feedback(u)) that the recommendation function uses as input
to recommend items to the group that includes u.

2) Item Recommendation: The output of the recommen-
dation function is a Boolean vector of length m that is
constrained to have at most a budget of k 1’s, where a 1 at
the j − th bit (should be read from left-to-right) corresponds
to the positive recommendation of an item ij . The output
recommendation is denoted Ik. The budget constraint of k
applies to many practical scenarios - e.g., a group itinerary
cannot visit more than k points of interest (items).

Robustness: By design, the generated recommendation in
our system may change, whenever pref(u) changes. As a
result, the set of recommendations generated for two different
versions (in terms of change in user preference) of the
group often differ. Given two recommended item-sets (each
is a boolean vector of length m), I ′k and I ′′k, generated
when some user updated her preference, the robustness
quantifies the similarity between I ′k and I ′′k using similarity
measures. Smaller distance (or higher similarity) denotes
higher robustness of recommendation to preference updates.

User Satisfaction: Given the preference vector pref(u) of a
user u and a recommended item vector Ik, we define user
satisfaction, Su, as the inverse of the distance between the
two vectors, or proportional to the similarity between them.
Traditional distance measures such as Hamming distance and
Jaccard Similarity [8] are natural candidates for this purpose.
Additionally, we consider a simpler notion of Jaccard Similar-
ity in this work, namely Overlap Similarity that enables us to
design efficient algorithms. More precisely, Overlap Similarity
is defined as Su = Σ∀j∈m(pref(uj) × Ikj), i.e., the number
of positive bits that are shared between the user’s preference
and the recommended items.

3) Group Recommendation Functions: We consider two
natural and popular group recommendation functions, denoted
by F . Those functions reflect different group consensus se-
mantics [4]. Each group recommendation function needs to
work in conjunction with a specific user satisfaction measure.

Aggregated Voting: Given feedback(u), 3 ∀u ∈ G, and k, the
Aggregated Voting Consensus generates a set of items Ik such
that Σ∀u∈GSu is maximized. For example, given two users
with feedback(u) = 1110 and feedback(v) = 0111, and k
set to 2 POIs, the resulting recommendation for the group of
u and u′ under the aggregated voting semantics will be 0110,
which produces an overall aggregated user satisfaction of 4
(2 for u and u′ respectively) under overlap similarity measure
for user satisfaction.

Least Misery: Given feedback(u), ∀u ∈ G, and k, the
Least Misery Consensus generates a set of items Ik such that
Min∀u∈GSu is maximized. For example, given four feedbacks
from the users in a group, 0101, 1101, 1001, 0010, and k
set to 2 POIs, the resulting recommendation for the group
under the least misery semantics will be 0011, which produces
a minimum user satisfaction of 1 under overlap similarity
measure for user satisfaction.

C. Problem Definitions
1) Recommendation Generation: Under a flexible user

preference model, the recommendation generation task is exe-
cuted whenever the preferences of an user is updated. Input to
the recommendation function is the latest feedback vectors of
all members in G, and a budget k (i.e., the maximum number
of items to be recommended). Output is the recommendation
vector Ik with at most k 1-bits. The items that have 1
corresponding to their position are chosen and recommended
to the entire group. The goal is find Ik such that it optimizes
user satisfaction based on the employed group consensus
function F .

2) Feedback Generation: The feedback box is executed
whenever a member u updates her preferences. Input to the
feedback box is the new preference of u, i.e., pref(u), the
feedback vectors feedback(u′) (∀u′ 6= u ∈ G) of other
existing members, the current budget k′, 4 and the group
recommendation objective F (see Section II-B3). The output
is a Boolean feedback vector, feedback(u), of length m for
u. The goal is to compute feedback(u), such that given
feedback(u), feedback(u′) (∀u′ 6= u ∈ G), k′, and F , the
recommendation box computes I ′k such that Su is maximized.

D. Summary of Results

Among different boolean satisfaction measures, only Over-
lap Similarity satisfies a monotonicity property (explained in
Sections III-A and III-B) which allows us to design efficient al-
gorithms with provable theoretical guarantees. For brevity, we
report results on Overlap Similarity and Hamming Distance for
two different group consensus functions in Sections III and IV.
Unless otherwise stated, solutions for Hamming Distance can
be trivially extended to Jaccard Index as well. We summarize
our main technical contributions in Figure 1.

3Note that the group recommendation functions can also admit
pref(u) instead of feedback(u) .

4As items are being consumed, e.g., a POI gets visited, the budget
will gradually shrink.

3

 Aggregated Voting Least Misery

Overlap

Similarity

Recommendation Generation:

Optimal Algorithm R-AGS

Complexity: O(mn)

Feedback Box: Not Useful

 Recommendation Generation:

NP-hard Problem

Greedy Approximation Algorithm R-

LMS with approximation factor (1-1/e)

Complexity: O(kn)

Feedback Box: Useful

NP-hard Problem

Optimal Algorithm FB-LMS

(considering an oracle for

recommendation computation)

Complexity: O(m)

Hamming

Distance

Recommendation Generation:

NP-hard problem

Algorithm R-AGD, based on

centroid computation relaxing

integrality constraint, followed by

deterministic rounding.

Complexity: O(mn)

Feedback Box: Useful

NP-hard problem

Algorithm: FB-AGD, based on

Quadratic Programming

formulation relaxing integrality

constraint, followed by

deterministic rounding.

Complexity: polynomial

Recommendation Generation:

NP-hard problem

Algorithm: R-LMD, based on Quadratic

Programming formulation relaxing

integrality constraint, followed by

deterministic rounding.

Complexity: polynomial

Feedback Box: Useful

NP-hard problem

Algorithm: FB-LMD, based on

Quadratic Programming formulation

relaxing integrality constraints, followed

by deterministic rounding.

Complexity: polynomial

Fig. 1: Summary of Results

III. AGGREGATED VOTING CONSENSUS

We discuss algorithms for computing recommendation and
feedback vector after an user updated her preference for
Aggregated Voting (described in Section II-B3), under Overlap
Similarity and Hamming Distance. For each similarity mea-
sure, the recommendation algorithm is first described con-
sidering the updated preference of the user without feedback
box, followed by the discussion considering feedback box in
conjunction.

Example 2. Imagine that a group G of 3(n) travelers
u1, u2, u3 are going to visit at most 3(k) different places.
Each place is an item, and an ordered list of possible 5(m)
items are {i1, i2, i3, i4, i5}. u3 updates her preferences to
pref(u3) = 00011 (meaning, she is now interested in i4, i5).
The feedback vectors of rest two travelers (obtained after
running their individual preferences through feedback box) are
as follows: feedback(u1) = 11000, feedback(u2) = 10011.

A. Overlap Similarity

Recall that Overlap Similarity only considers the items for
which user has expressed preference by setting the corre-
sponding bit in the preference vector to 1. Under Aggregated
Voting, the recommendation task becomes determining a set
of items that maximizes the sum of Overlap Similarity for all
group members (aggregated satisfaction). Overlap Similarity
is monotonic, as adding an item to the recommended set only
improves the Overlap Similarity value (thereby satisfaction).
Due to this property, the optimal recommendation will always
contain k items.

1) Generating Recommendations: Due to the monotonicity
property, recommendation computation can progress in an
iterative, item-by-item manner. We describe our proposed
algorithm R-AGS that computes an optimal recommendation
in O(mn) time.

Algorithm R-AGS: Given the feedback vectors of all users
in the group, R-AGS associates a score for each item ij ∈ I.
The score of an item ij is defined as the number of users in
the group who have expressed preference for ij . After this
step, R-AGS chooses the k-items with the highest scores (i.e.
the top-k items preferred by the most users) to be presented
as recommendation Ik. Notice that ties are broken arbitrarily
as each choice still results in the same value of overall group
satisfaction.

Consider the scenario described in Example 2. The set of
items recommended by R-AGS (where k = 3) (considering
feedback(u1), feedback(u2), pref(u3)) are : {i1, i4, i5}. As
we can see, each of the chosen POIs is desired by more users
than the ones not picked. In other words, R-AGS computes
recommendation vector Ik as 10011 for the group.

2) Generating New Feedback Vector: We now describe
the process for generating feedback vector using Example 2,
where user u3 uses the feedback box. The task for feedback
box is to generate new feedback(u3) (potentially different
from pref(u3)) such that Su3

(pref(u3), I ′′k) is maximized,
where

I ′′k = F(feedback(u1), feedback(u2), feedback(u3))

I ′′k is 10011 when feedback(u1), feedback(u2), feedback(u3)
is considered. Observe that, any update of preferences of
a user (u3 here) only affects the possibility of a subset
of these 5 items to be included (or excluded) to the new
recommendation: items that have j, j + 1, j − 1 scores
(where j is the aggregated score of the k-th item without the
user who updated her preferences). Let X be that set. For
example, i1 will be present in the generated recommendation,
irrespective of whether u3 prefers it or not. Let the items
that are set to 1 in pref(u3) be denoted by Y . Observe that,
u3’s satisfaction (Su3) could be maximized as long as the
generated feedback(u3) contains those items that are present
in {X ∩ Y}. Thus, the following lemma holds:

Lemma 1. Given a user u, items in feedback(u) are always
a subset of items in pref(u).

Furthermore, observe that the presence/absence of the ad-
ditional items {Y − X} in feedback(u) does not change
Su, simply because the feedback of u alone is insufficient to
promote them to the generated recommendation. An exception
to this happens when the lowest aggregated score of an item
in {X ∩ Y} is 1, then the additional {Y − X} items should
also be included in feedback(u) (to exploit the benefit of ties)
5 . In either case, the following theorem holds:

Theorem 1. feedback(u) will be at most as useful as
pref(u).

Thus, we conclude that the feedback box is not useful when
the consensus function is aggregated voting and satisfaction
measure is Overlap Similarity.

5In the given example feedback(u3) is equal to pref(u3).

4

B. Hamming Distance

Unlike Overlap Similarity, Hamming Distance is measured
by considering both 0 and 1 preferences. Unlike Overlap
Similarity, Hamming Distance does not satisfy monotonicity
property: suppose there exists only one pref(u) and any
given Ik. Based on that, Su could be computed. Now, if we
arbitrarily set one of the 0-bits in Ik to 1, that may decrease
Su (as the Hamming Distance may now be even larger).For the
same reason, an optimal Ik may not always contain k 1’s. This
precludes the iterative approach and makes recommendation
and feedback generation to be substantially challenging.

1) Generating Recommendations: The optimal recommen-
dation vector maximizes the aggregated group satisfaction by
minimizing the aggregated Hamming Distances between the
respective feedback vectors and the generated recommenda-
tion. Since Hamming Distance could be expressed in L2 mea-
sure, this definition is equivalent to the Facility Location [10]
or Geometric Median Finding [11] problems. Unfortunately,
this problem and several of its variants have shown to be NP-
hard [12], [13].

Consider a slightly different variant of this classical defini-
tion, where the task is to minimize the aggregated square of
the distance (as compared to the aggregate distance). The new
objective function is still natural and minimizes the aggregate
distance. This variant is equivalent to the geometric problem
of finding the centroid of a set of points. Unlike geometric
1-median finding problem [14], [15], finding centroid of a set
of points is computationally much easier in geometric settings,
as each coordinate of the centroid could simply be expressed
as the average of the samples of that coordinate. We adopt
this latter definition for our problem, as it enables us to design
efficient algorithm while still producing a recommendation that
is meaningful. Formally, the task is to,

Compute Ik s.t. Σ∀u∈GHamming(Ik, feedback(u))
2

is minimized.

Even after we adopt the centroid definition, the generated
recommendation vector needs to be Boolean in our case.
While efficient solutions could be designed when there are
only 2 users, the integrality constraint gives rise to significant
computational challenges, for general n and m.

Algorithm 1 Subroutine Centroid

Input: feedback(u1), feedback(u2) . . . feedback(un);
Output: Centroid C : a vector of size m

1: Cj =
Σn

i=1(feedback(u
j
i))

n
,∀j ∈ m;

2: return C;

Theorem 2. The decision version of the Ik generation prob-
lem is NP-complete.

We omit the details for brevity, and note that our proof uses
a reduction from SAT [16], similar to Theorem 5 .
Algorithm R-AGD: The basic idea of this solution is to relax

the integrality constraint, and then solve it as a centroid finding

problem in geometric settings using Algorithm 1. For the j-
th item, Cj is computed as the average of all the feedback
vectors in the group. This task overall takes O(m× n) time.
Once the centroid is obtained (of length m), we perform a
deterministic rounding; In other words, recommendation bit
for the j-th item is set to 1, if Cj >= 0.5; otherwise, it is set
to 0. The centroid C becomes the recommendation vector Ik
after rounding. However, such a rounding that is oblivious to
values of other items could result in a vector that has more than
k ones. In such a case, we arbitrarily choose k of those 1’s, and
set the remaining bits to 0. This yields the final Ik. We note
that this rounding process may introduce an approximation
in the computed Ik. We leave the theoretical analysis of the
approximation factor to future work, but evaluate it empirically
in Section VII.

Considering feedback(u1), feedback(u2), pref(u3) of Ex-
ample 2, Algorithm R-AGD turns the following 2 items to 1
for the group in the generated Ik: {i1, i4}; remaining 3 items
are all set to 0.

2) Generating New Feedback Vector: Recall from the pre-
vious subsection, that the optimal recommendation is (Ik)
10010, when the feedback box is not used. Su3

is 2 here,
as the Hamming Distance between u3 and Ik is 2. But
if feedback(u3) = 01111 is used instead, the generated
recommendation I ′′k will be forced to include one of the items
that u3 prefers; i.e., one optimal generated recommendation
I ′′k will be 01011. Note that now Su3

is improved further,
since the Hamming Distance between pref(u3) and I ′′k is
just 1 now.

Lemma 2. Given a user u, there exists a feedback(u) that
will be at least as useful as pref(u).

Algorithm FB-AGD: Computing an optimal feedback(u)
for the user who has updated her profile is NP-hard as the
recommendation subroutine it uses is itself NP-hard (see
Section III-B1). Our proposed solution FB-AGD works as
follows: Let u be the user who has a new preference. Then
we formulate feedback(u) computation as an optimization
problem, such that the objective function maximizes Su (by
minimizing the Hamming Distance between pref(u) and the
generated recommendation). Each of the variables (items) in
feedback(u) are required to be between 0 and 1 (but not
necessarily integers) 6. After that, it performs deterministic
rounding, and obtain a Boolean feedback(u4). Formally, the
task is to

minimize Hamming(pref(u), Ik)

subject to |feedback(u)| = m

0 ≤ ∀i ∈ feedback(u) ≤ 1

Ik = F(feedback(u1), . . . , feedback(u))

During the computation of feedback(u), Algorithm FB-

6That task could be formulated as a convex optimization prob-
lem, where the objective function as well as the constraints could
be expressed as positive definite matrices; this form of quadratic
programming admits a polynomial time solution.

5

AGD uses Subroutine 1 for generating Ik’s.
Output of this quadratic optimization problem assigns a

value (between 0 and 1) to each of the m variables (items) of
feedback(u); 7. Since, the final output needs to be Boolean,
deterministic rounding is performed that transforms any item
with fractional value ≥ 0.5 to 1, and the remaining to 0. This
yields our final feedback(u). Note that this rounding process
may introduce approximations in the final feedback(u); The
theoretical analysis of the approximation factor is left to
future work, while we experimentally evaluate these factors
in Section VII.

IV. LEAST MISERY CONSENSUS

We next discuss algorithms for computing recommendation
and feedback vector (after an user updated her preferences)
for Least Misery (described in Section II-B3), under Overlap
Similarity and Hamming Distance. Recommendation robust-
ness could be ensured following techniques described in
subsection VI.

We describe our running example in Example 3 for this
section. For each similarity measure, the recommendation
algorithm is first described considering the updated preference
of the user without feedback box, followed by the discussion
considering feedback box in conjunction.

Example 3. Group G consists of 3(n) travelers u1, u2, u3

to visit at most 3(k) different places. An ordered list of
possible 5(m) items (i.e., places) are {i1, i2, i3, i4, i5}. u3

updates her preferences to pref(u3) = 00111 (meaning, she
is now interested in i3, i4, i5). The feedback vectors of rest two
travelers (obtained after running their individual preferences
through feedback box) are as follows: feedback(u1) = 10110,
feedback(u2) = 01110.

A. Overlap Similarity

1) Generating Recommendations: We are interested to
compute Ik such that the minimum satisfaction of the group is
maximized (i.e, the minimum Overlap Similarity between the
generated recommendation and the individual feedback vector
(or preference vector) is maximized).

When there are only two users in the group, computing Ik
is simple. Intuitively, the task is to consider the items where
the user’s respective feedback vector differs. The algorithm
splits those items in two equal halves, and the generated rec-
ommendation sets the items of each of these halves according
to the feedback vector of one user. This simple computation
could be done in O(m) time. However, this simple process
fails to extend for a general n and m.

Theorem 3. The decision version of the Ik generation prob-
lem is NP-complete.

Proof: The decision version of the problem of recommen-
dation generation is as follows: For a given set of feedback

7Integrality constraints are relaxed because integer programming is
NP-hard.

vectors (feedback(u1), feedback(u2) . . . feedback(un)), de-
fined over a set of m items, is there a recommendation vector
Ik, such that the Least Misery value is 1. The membership
of the decision version of the recommendation generation
problem in NP is obvious. To verify its NP-completeness, we
reduce the Hitting Set(U, S) [16] problem to an instance of
our problem.

We consider an instance of Hitting Set(U, S) [16]; we are
required to construct an instance of recommendation problem,
where each set represents a feedback vector feedback(ui),
and the task is to compute Ik, such that the Least Misery
is 1; such that there exists a Hitting Set of size k, covering
each set in S, if and only if, a solution to our instance of
recommendation problem exists (each 1-bit in Ik corresponds
to an element of the Hitting Set).
Approximation Algorithm R-LMS: As the problem is NP-
hard, we propose an efficient yet effective approximate solu-
tion that incrementally composes the recommendation vector
in a greedy manner. Algorithm R-LMS initializes each item
of Ik to 0 in the beginning. After that, it operates in k-
iterations, where a single item is selected in each iteration,
and the corresponding bit is set to 1 in the partially computed
Ik according to one rule: at each iteration, it selects an item
that is not yet set in Ik from that user who has the current
Least Misery value (i.e., least overlap with the current Ik).
The algorithm terminates when exactly k bits of Ik are set to
1 in this process.

R-LMS generates Ik that sets the following 3 items to
1 in Example 3 for feedback(u1), feedback(u2), pref(u3):
{i1, i3, i4}.

Compared to its optimal counterpart, R-LMS is efficient,
as Ik could be generated in O(k × n) time. Additionally, it
has a provable approximation factor, as we discuss next.

Approximation Factor: We begin by describing our strat-
egy for proving approximation guarantees. Consider an arbi-
trary function f() that maps the subsets of a finite ground
set U to non-negative real numbers8 . We say that f() is
submodular [17], [18] if it satisfies the “diminishing-returns”
property: the marginal gain from adding an item to a set S
is at least as high as the marginal gain from adding the same
element to a superset of S. Formally, a submodular function
satisfies

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T)

for all elements v, and all pairs of set S ⊆ T .

Lemma 3. Algorithm R-LMS approximates the Least Misery
of the generated Ik within (1 − 1

e) factor of the optimal
solution.

Proof: Overlap Similarity is monotonic, and could be
proved to satisfy the “diminishing-returns” property. We omit
the details for brevity. Algorithm R-LMS is akin to the greedy

8Overlap Similarity satisfies this form: It maps each subset of the
item-set I to a real-number in Ik denoting the Overlap Similarity if
that subset is included in Ik.

6

strategy described above [18]. Hence, it admits the above
approximation factor.

2) Generating New Feedback Vector: With updated
pref(u3) of Example 3, recall a possible Ik = 10110. Note
that, Su3 is 2 (as u3’s desired i3 and i4 items are present
in Ik). Instead of that, if feedback(u3) = 00001 is used
as an input along with feedback(u1), feedback(u2), then a
possible I ′′k = 00111. Note, now, u3 is fully satisfied with
the generated I ′′k (it contains all 3 of her preferred items).
Therefore, the following lemma holds.

Lemma 4. Given a user u, there exists a feedback(u) that
will be at least as useful as pref(u).

The above example leaves some intuition for designing
feedback(u3). Observe that, even when u3 is not considered
at all, any recommendations considering users u1, u2 has to
have items i3 and i4 in it. Intuitively, these items should
not be present in feedback(u4). The idea is to set only
those items that are exclusively preferred by u3, and com-
pose feedback(u3) such that the recommendation function
is forced to select some of those items. This intuition is
formalized further in our proposed algorithm FB-LMS.
Optimal Algorithm FB-LMS: Without loss of generality, let
u1, u2, u3, . . . , un be the users in a group, where ui has a
preference update. let X be the set of k items that are set to 1
in the generated recommendation (i.e., in I ′k) for G, without
considering ui. Let Y be the items that are present in ui’s latest
preference. Algorithm FB-LMS generates that feedback(ui)
which only sets {Y − X} items to 1.

Note that, the feedback-box is an NP-hard problem, since
its recommendation counterpart is shown to be NP-hard above.
However, if an oracle for recommendation computation is
assumed, we claim that this surprisingly simple set difference
based algorithm generates optimal feedback vector for the
latest preference of the user, as we shall prove next.

Lemma 5. Let {Y ∩ X} be the subset of the items that are
present in one of the optimal recommendation vectors (I ′k)
for G (without ui). With an updated pref(ui), {Y ∩X} items
will still be present in one of the new optimal recommendation
vector (Ik) .

Proof: We prove the above lemma by contradiction. Let
us assume that such a recommendation vector Ik does not
exist. This means, that the set of {Y ∩ X} items are now
replaced by a new set of |Y ∩ X | items. We note that such a
substitution will only happen if {Y∩X} are not present in the
updated pref(ui). That is a contradiction; since {Y ∩ X} ⊂
Y , and Y is present in the updated pref(ui). Therefore, one
optimal Ik sets all the items in {Y ∩ X} to 1 .

Given the above lemma, we can additionally prove:
• It is not useful to set the items in {Y ∩ X} to 1 in

feedback(ui).
• Sui

can only increase if the items in {Y−X} are included
in feedback(ui).

• Sui
is only higher for feedback(ui) that contains the

items in {Y − X}, compared to any other feedback that

contains its proper subset (S ⊆ {Y − X}).
Therefore, the following theorem holds.

Theorem 4. Given a user u, FB-LMS generates optimal
feedback(u).9

Algorithm FB-LMS generates feedback(u) in O(m) time,
if an oracle for recommendation computation is assumed.

B. Hamming Distance

1) Generating Recommendations: We are interested to
compute Ik such that the minimum satisfaction of the group is
maximized (i.e, the maximum Hamming Distance between the
generated recommendation and the individual feedback vector
(or preference vector) is minimized).

As Hamming Distance could be expressed in L2 measure,
under Least Misery, the task of recommendation computation
is analogous to finding the smallest enclosing ball [19], [20] in
Computational Geometry. Similar to the case of Aggregated
Voting, the geometric exact and approximate solutions [21]
are inappropriate, as we study the problem in very high di-
mension [19], and intend to generate a Boolean vector. Again,
the task is easy to solve for 2 users, but remains extremely
complex for general n and m. Moreover, unlike the problem
in Section IV-A1, it does not admit a greedy solution, as
Hamming Distance does not satisfy the monotonicity property.

Theorem 5. The decision version of the Ik generation prob-
lem is NP-complete.

Proof: The decision version of the recommendation gen-
eration problem is as follows: For a given set of feedback
vectors (feedback(u1), feedback(u2) . . . feedback(un)), de-
fined over a set of m items, is there a recommendation vector
Ik such that the Least Misery (based on Hamming Distance)
is m − 1. The membership of the decision version of the
recommendation generation problem in NP is obvious. To
verify its NP-completeness, we reduce SAT [16] to an instance
of our problem.

We consider an instance of SAT [16] with m variables,
where each clause contains all m variables, and the Boolean
expression is a conjunction of n clauses. We are required to
construct an instance of our recommendation problem where
each clause represents a feedback vector feedback(ui) of one
of the n users and the task is to generate an Ik that has
the Least Misery (maximum Hamming Distance between Ik
and the feedback vectors) value of m − 1; such that there
exists an assignment of the m variables which satisfies the
Boolean expression, if and only if, a solution to our instance
of recommendation problem exists.
Algorithm R-LMD: We design our proposed Algorithm R-
LMD as an optimization problem, as the task could be
translated in the form that admits polynomial time solution

9When there exists multiple optimal Ik, in order to generate the
optimal feedback(u), algorithm FB-LMS needs to have all those
Ik and corresponding feedback(u) at its disposal, and it selects
that feedback which maximizes Su.

7

(convex optimization problem on positive definite matrices).
Given n feedback vectors defined over m Boolean variables
(items), the task is to compute Ik, such that each variable in
Ik is between 0 − 1 (but not necessarily integers). Formally,
the task is to,

minimize Max(Hamming∀u∈G(Ik, feedback(u))

subject to 0 ≤ i (∀i ∈ Ik) ≤ 1

|Ik| = m

Ik = F(feedback(u1), . . . , feedback(un));

This quadratic equation is solved by a general purpose solver
to obtain a Ik, where each i ∈ Ik is a fractional value between
(0, 1). After that, we perform a deterministic rounding as
explained in Section III-B1 such that the resultant Ik may
at the most have k-1’s.

Algorithm R-LMD sets the following 3 POIs
to 1 in Example 3 for the group considering
feedback(u1), feedback(u2), pref(u3) : {i1, i3, i4}. The
rest of the items are all set to 0.

2) Generating New Feedback Vector: Recall if pref(u3) of
Example 3 is used, an Ik will be 10110. If feedback(u3) =
00001 is instead used, generated I ′′k will be 00111. With I ′′k,
u3 is more satisfied.

The optimal feedback generation is an NP-hard problem,
since its recommendation counterpart is proved to be NP-hard.
Similar to the recommendation computation algorithm, we
propose algorithm FB-LMD based on quadratic optimization
(relaxing integrality constraints) which admits polynomial time
solution. However, there are non-trivial challenges to do so,
as we describe next:
Algorithm FB-LMD: Without loss of generality, given the
updated preference of user a u, the task is to generate
feedback(u) that maximizes Su (by minimizing Hamming
Distance). Note that the optimizer may need to compute
multiple Ik in this process, where computing Ik itself is an
optimization problem. The objective function admits only one
optimization task, and the rest is expressed as constraints.
This requires careful formulation, as the recommendation
computation now needs to be expressed as constraints, without
compromising its correctness. The problem is formalized as
follows:

minimize d = Hamming(Ik, pref(u))

subject to feedback(u, Ik) ≤ d, ∀u ∈ G
feedback(u, Ik) ≤ d

0 ≤ i ≤ 1, (∀i ∈ feedback(u))

|feedback(u)| = m

Note that, although the recommendation task is expressed as a
set of constraints, with this careful formulation, the optimizer
always produces correct result; as the task now is to minimize
the Hamming distance (corresponds to d in the formulation),
and in turn generate recommendation where the Least Misery
is not larger than that distance.

The optimizer generates feedback(u) with m variables,

where each variable may be a fraction between 0 and 1.
Deterministic rounding is then performed as we have done
in Section III-B1. This yields the final feedback(u). We note
that the rounding process may introduce approximation in the
final result. The empirical analysis of the approximation factor
is studied in Section VII, while the theoretical analysis is
deferred to future work.

V. NON-BOOLEAN PREFERENCE MODELS

In this section, we generalize the user preference model
and describe how our algorithms can be adapted. Thus far,
user preferences were expressed as a Boolean vector where 1
corresponds to the items she prefers to consume. Two natural
alternatives are numeric or ordinal preference models. Under
numeric preference model, the user expresses her preference
for an item as a real number between 0 and 1, where 1
represents the highest preference. Under an ordinal preference
model, user expresses her preference over items through a
discrete set of values (such as not liked, neutral, liked, very
liked). However, in contrast to categorical values, there exist
an ordering between preferences. A user would prefer an item
with neutral preference over one with not liked preference.

Both the user preference vector and the feedback vector are
expressed using the non-Boolean preference model. For both
cases, user satisfaction with the generated recommendation
needs to be measured considering generalized distance mea-
sures (e.g., Euclidean distance). The group recommendation
functions, aggregated voting and least misery, can naturally
be extended to this setting.

Generating group recommendation for numeric user pref-
erences have been studied previously [3], [1]. Unfortunately,
when the user preferences are expressed in ordinal scale, the
problem becomes NP-hard. However, our recommendation
algorithms for Boolean preferences can be easily extended
to generate group recommendations. Similarly, the feedback
generation algorithms can easily be extended to non-Boolean
preference models. For numeric preferences, our optimization
formulation is still valid. However, the integrality constraints
that necessitated user preferences to be Boolean could be
relaxed. The objective function with the altered constraints,
defines a convex quadratic optimization problem for which
solutions can be computed efficiently in polynomial time.
However, the computational complexity remains unchanged
for ordinal preference model, since the generated feedback
vector needs to select one of the discrete values from its
ordinal domain. Our proposed algorithms can be adapted by
treating the ordinal scale as numeric and post processing the
solution back to ordinal scale.

VI. RECOMMENDATION ROBUSTNESS

After an dynamic update of user preference, the feedback
box followed by recommendation generation process needs
to be re-invoked, which may generate a different recommen-
dation vector. In this section, we discuss recommendation
robustness to ensure that the generated recommendations are
not too different before and after one (or a small number of)
user preference updates.

8

Robustness is considered as a soft constraint that could
further be tuned. Alternatively, one may also think it as a
hard constraint, where the task would be to generate that
recommendation, which not only optimizes group satisfaction,
but also contains the highest similarity with the previous
recommendation. Expressing robustness as a hard-constraint
has several shortcomings: first, one has to enumerate all
possible optimal recommendations (as there could be mul-
tiple optimal solutions), which is prohibitively expensive to
compute; second, the proposed techniques fall short, and the
theoretical results do not lend under such settings. Conversely,
we easily adapt robustness to our solution framework as a
soft tunable constraint. The primary idea is to add previously
generated recommendation(s) as new feedback vector(s) (as
pseudo-users) to the recommendation function. Not only that,
applications that desire high degree of robustness, may poten-
tially replicate the same recommendation vector several times,
and input all of them as multiple feedback vectors to the
recommendation function. This should achieve higher degree
of robustness, as we shall see in our experimental study. All
our theoretical results are extended under this setting.

VII. EXPERIMENTS

We conduct a comprehensive set of performance and quality
experiments using real world datasets extracted from Lonely
Planet, Flickr, and MovieLens10. Our prototype system is
implemented in C++ using IBM CPLEX as the solver for ILP
and QP formulations. All experiments are conducted on an
AMD machine quad-core 2.0GHz CPUs, 8GB Memory, and
1TB HDD, running Ubuntu 12.10. All numbers are obtained
as the average of five runs.

A. Summary of Experimental Results

For brevity, we present scalability results conducted on
the large dataset (MovieLens, 10M data corpus), and quality
results conducted on the relatively smaller dataset (Lonely
Planet and Flickr). The omitted results are similar to the ones
depicted. The usefulness of the feedback box is validated using
extensive quality and user-study experiments where we record
the instances where one of the group members updates her
preferences necessitating the invocation of feedback box and
subsequent recommendation generation.

Our primary observations are as follows: a) the presence of
a feedback box is deemed always useful. The degree of useful-
ness varies; it is most useful for Least Misery recommendation.
Furthermore, the presence of a feedback box is critically
important for groups formed by users with similar preferences.
b) Our group consensus functions and Boolean preference
measures are enthusiastically preferred by human evaluators.
c) Even though the problems are NP-hard most of the cases,
our proposed solutions are highly scalable, and generate good
quality results. d) Finally, our proposed robustness technique is
both effective and efficient in handling changing preferences

10http://www.lonelyplanet.com/, http://www.flickr.com/services/
api/, http://www.grouplens.org/node/73

in group recommendation, even when multiple users update
their preferences using feedback box.

B. Data Preparation

City Names and POI Generation: We consider 12 popular
tourist destinations (cities) and their POIs (Points of Interest).
Popular POIs of those cities are extracted using Lonely Planet
dataset. London, New York, Barcelona, Bangkok, Amsterdam
are some example cities we consider. The number of POIs per
city varies between 35 and 163.

User Preferences for Travel dataset: We use publicly
available Flickr photos to simulate Boolean preference vectors
for users. They are tagged with corresponding POI names, and
the respective date/time associated with the photos define the
itineraries (such as, a set of POIs visited on the same day).
Given a Flickr log of a city, each row in that log corresponds
to a user itinerary that is visited in a 12-hour window. The set
of POIs present in each itinerary constitutes a pref(u).

User Preferences for MovieLens dataset: The MovieLens
dataset contains 10 million movie ratings (from 0.5 to 5)
provided by 71567 users, over 10681 movies. We adopt a
simple procedure to convert numerical ratings to Boolean
preferences: a rating smaller than 3 is transformed to a 0,
or transformed to a 1, otherwise. A rating of 3 is considered
neutral, and is excluded from further considerations. Given a
set of movies I (i.e., items), the Boolean preference vector
pref(u) is thus generated for each user. A movie not rated by
user u is treated as 0 in pref(u).

C. Performance Experiments

We report efficiency results for the recommendation algo-
rithm and feedback boxes under different user satisfaction
measures and group consensus functions using MovieLens
dataset. Performance is recorded by mainly varying 3 pa-
rameters - number of items in the generated recommendation
(k), group size (n), and total number of items (m). The total
running time of the system is the aggregated running times of
the recommendation and feedback box.

1) Recommendation Generation: As a straw-man competi-
tor, a brute-force algorithm (referred to as Brute-Force) is
also implemented. This enumerates and evaluates all possible
combinations, before selecting the best answer.

Varying Budget k: We study the running time of different
recommendation algorithms by varying k, the number of
recommended items at each iteration. We fix n at 5000, and m
at 5000. Figure 2 shows the output of this experiment. Brute-
Force quickly becomes very expensive even for small values of
k(< 5), therefore, we use secondary Y -axis for that in minute
scale. Our algorithms are very efficient (scale linearly with
k) and are measured in seconds using the primary Y -axis.
Hamming Distance-based algorithms, exhibit higher running
times than their Overlap Similarity counterparts.

Varying Group Size n: In this experiment we set k =
100, m = 5000 and compute recommendation for different
group sizes. Figure 3 shows the result. While the running time
increases with group size, this increase is much slower with

9

http://www.flickr.com/services/api/
http://www.flickr.com/services/api/
http://www.grouplens.org/node/73

increasing values of n. This is due to the fact that algorithm
complexity depends on m.

Varying Total Number of Items m : Here, we set k =
100, n = 5000. Figure 4 shows the result. We fail to report
the performance of the brute force algorithm as it takes hours
to execute. The running time of R-AGD stays almost constant.
The performance of other recommendation algorithms show a
steeper increase in comparison, as additional items exponen-
tially increase the number of potential candidate solutions.

2) Feedback Box: Varying Budget k: Our empirical study
shows that the running time of the feedback box remains
almost unchanged for all the algorithms with varying k. For
brevity, we omit those results.

Varying Group Size n : In this experiment, k is set
to 100, and m = 5000. Figure 5 shows the result. Run-
time of FB-LMS remains constant with varying n because
as this algorithm relies on set difference that depends only
on m. Both FB-LMD and FB-AGD are based on Quadratic
Programming, and demonstrate similar performance. Note
that group size bears significant impact on the running time
of the recommendation algorithms, unlike its feedback box
counterpart, where the impact is minimal.

Varying Total Number of Items m : Here k = 100, and
n = 5000. Figure 6 shows that while FB-LMS scales linearly
with increasing m, QP based algorithms FB-LMD and FB-
AGD have a steeper increase in running time.

D. Quality Experiments

1) Offline Quality Experiments: We qualitatively evaluate
how feedback box improves the satisfaction of the user (with
updated preference) in the generated recommendation, com-
pared to her (latest) preference.

User Satisfaction with feedback box: The objective is
to verify if Su is improved in the presence of a feedback
box. Parameters are set at m = 125, k = 20, n = 75. The
usefulness of a feedback box is evaluated by varying pairwise
similarity between users in a group. The similarity of a group
is computed as the average pairwise Jaccard Index [8] of the
preference vectors. The group similarity varies between 0.1
and 0.5. Given a u, ∆Su is measured in Y-axis with and
without a feedback box. Figure 8 shows the result.

Under both preference measures, Su is higher, when a
feedback box is used. However, the degree of usefulness
is maximum for groups with similar members and Least
Misery consensus function; this observation is intuitive, as
it is expected that the feedback box would suggest a more
effective feedback(u), when existing group members are
similar to each other. The usefulness of the feedback box
however is minimal under Aggregated Voting; this is also
intuitive, as Aggregated Voting is less sensitive to individual
user satisfactions compared to Least Misery.

Group Size Vs User Satisfaction: In this experiment, we
evaluate the change in Su with increasing n. Figure 7 shows
the result, where k = 20, and m = 75. Overall, we observe
that user satisfaction decreases as the group size increases. The
drop is mildest under Aggregated Voting. This is due to the

fact that in order to replace an item in the recommendation
with a different one (chosen from the items in user’s new
preference), a majority of the existing users would have to
prefer it. The decrease is steepest for Least Misery, as it tries
to satisfy these new users with increasing group size, causing
Su to further decrease.
Empirical Evaluations of Approximation Factor: Recall
that algorithms R-AGD and R-LMD for recommendation
generation and FB-AGD and FB-LMD for feedback box
generation are approximate in nature. Each of them involves
solving the optimization problem by relaxing integrality con-
straints and then performing deterministic rounding. We com-
pare the quality of results generated by the optimal brute-force
algorithm with that of our approximate algorithms. Due to
very high time complexity of brute-force, we are only able to
run these algorithms for small values of k and m. We notice
that our designed approximate algorithms routinely achieve
approximation factor as high as 90%.

2) Online User Study: We now describe our user study
performed through the crowd-sourcing platform Amazon Me-
chanical Turk using Flickr dataset.The goal of this study is
twofold: first, investigate improvement in user satisfaction in
presence of a feedback box; second: analyze user’s affinity to
different group recommendation functions.

#Cities #Total POIs #Users #HITs #Worker/HIT
3 439 270 54 5

TABLE I: User Study Statistics

FB-LMD R-LMD FB-LMS R-LMS R-AGD R-AGS
Si(S) 5% 0% 65% 30% 0% 0%
D(S) 0% 0% 40% 35% 0% 25%
R(S) 10% 5% 62% 10% 3% 10%

Si(M) 20% 0% 40% 0% 5% 35%
D(M) 11% 2% 35% 7% 3% 42%
R(M) 1% 1% 38% 20% 0% 40%

TABLE II: User Study: User satisfaction in generated recom-
mendation with and without response box

Required statistics are described in Table I. We only con-
sider reliable user feedback, i.e., those users who satisfactorily
pass qualifying test to check if they are familiar with a city. We
choose 3 cities (London, San Francisco, and Barcelona) and
their associated POIs for this study. We consider two different
group sizes - small(S) groups with 5 users, and medium(M)
groups with 15 users. k is set to 10. For each city and
group size combination, we created a HIT (Human Intelligence
Task) for similar(Si) (aggregated pair-wise similarity ≥ 0.4),
dissimilar(D) (≤ 0.06), and random(R) user groups.

HIT Design: Given a group, we designate one of the users
in the group as the user who updates her preferences. We then
utilize her recent preferences for the rest of the experiment. We
generate group recommendation for the entire group for each
combination of recommendation function and user satisfaction,
with and without the presence of feedback box;. For Aggre-
gated Voting, we only consider the recommendation generation
task, as Figure 8 clearly shows that the feedback box has the
least effect in improving user satisfaction. A worker of the HIT
is asked to evaluate the group recommendation as if she were

10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

5

10

15

20

25

30

35

3 4 100 250 500 1000 2000 5000

Ru
nt

im
e

of
 B

ru
te

 F
or

ce
 (i

n
m

in
ut

es
)

Ru
nt

im
e

(in
 s

)

k (n=5000, m=5000)

R-AGS

R-LMS

R-AGD

R-LMD

Brute Force

Fig. 2: Recommendation: k Vs Runtime

0

5

10

15

20

25

30

1000 2000 3000 5000 10000 20000 25000

R
u

n
ti

m
e

(i
n

 s
)

n (k=100, m=5000)

R-AGS

R-LMS

R-AGD

R-LMD

Fig. 3: Recommendation: n versus Run-
time

0

2

4

6

8

10

12

14

16

18

50 100 250 500 1000 2000 5000

R
u

n
ti

m
e

(i
n

 s
)

m (k=100, n=5000)

R-AGS

R-LMS

R-AGD

R-LMD

Fig. 4: Recommendation: m Vs Runtime

0

5

10

15

20

25

30

35

40

45

1000 2000 3000 5000 10000 20000 25000

Ru
nt

im
e

(in
 s

)

n (k=100, m=5000)

FB-LMS

FB-LMD

FB-AGD

Fig. 5: Feedback box : n Vs Runtime

0

5

10

15

20

25

30

35

50 100 250 500 1000 2000 5000

Ru
nt

im
e

(in
 s

)

m (k=100, n=5000)

FB-LMS

FB-LMD

FB-AGD

Fig. 6: Feedback box : m Vs Runtime

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

20 30 40 50 75

U
se

r S
at

is
fa

ct
io

n

n (k=20, m=50)

R-AGS

R-LMS

R-AGD

R-LMD

Fig. 7: Feedback box: n Vs User Satis-
faction for Similar groups

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.1 0.2 0.3 0.4 0.5

ΔU
se

r S
at

is
fa

ct
io

n

Group Similairity (k=20, n=25, m=50)

ResLMS

ResLMD

ResAGS

ResAGD

Fig. 8: Feedback box: Group Similarity
Vs User Satisfaction

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FB-LMD R-LMD
only

FB-LMS R-LMS
only

R-AGD R-AGS

A
ve

ra
ge

 U
se

r R
at

in
g

Similar

Dissimilar

Random

Fig. 9: User Study: User Rating for rec-
ommendations (Small group)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FB-LMD R-LMD
only

FB-LMS R-LMS
only

R-AGD R-AGS

A
ve

ra
ge

 U
se

r R
at

in
g

Similar

Dissimilar

Random

Fig. 10: User Study: User Rating for
recommendations (Medium group)

0

0.05

0.1

0.15

0.2

0.25

4% 8% 12% 16% 20%

|Δ
A

gg
re

ga
te

 G
ro

up
 S

at
is

fa
ct

io
n|

%Preference Updates (k=20, n=25, m=50), Robustness = 20%

ResLMS

ResLMD

ResAGS

ResAGD

Fig. 11: Robustness: Percentage of Pref-
erence Updates Vs Group Satisfaction

0

0.05

0.1

0.15

0.2

0.25

4% 8% 16% 32% 64%

|Δ
A

gg
re

ga
te

d
G

ro
up

 S
at

is
fa

ct
io

n|

Robustness Weight (k=20, n=25, m=50), 20% Preference update

ResLMS

ResLMD

ResAGS

ResAGD

Fig. 12: Robustness: Weight Vs Group
Satisfaction

0

2

4

6

8

10

12

14

16

18

4 8 12 16 20

Ru
nt

im
e

(in
 s

)

Robustness Weight (k=20, n=25, m=50)

R-AGS

R-LMS

R-AGD

R-LMD

Fig. 13: Robustness: Weight Vs Runtime

the designated user who updates her preference. In addition to
her own preference, she has also access to the preferences of
other members of the group. We ask the worker to perform two
tasks. In the first, she is asked to independently evaluate the
output of each recommendation function (Figures 9,10) with
ratings 1−5 (5- most satisfied, 1-least satisfied) . In the second,
she is asked to chose which recommendation is preferred by
her in comparison with the rests. The worker is not told which
method is used to generate which list. Percentage breakdown
of worker satisfaction is shown in Table II.

Result Interpretation: For the first task(Figures 9,10), we
observe that the workers in each of three different groups
(similar, dissimilar, random) clearly prefer the recommenda-
tion generated using the feedback box, rather than the one
without it. This behavior is consistent for both small and

medium sized groups, but to different degrees. It could also
be seen that feedback box seems to be more useful for similar
and random groups, than dissimilar groups. This is consistent
with our offline quality evaluations in Figure 8. For the second
task, we observe that workers overwhelmingly prefer Overlap
Similarity with and without feedback box. It can be explained
by the fact that it is a simpler satisfaction measure for users
to understand than Hamming distance.

Satisfaction is higher in smaller groups, akin to our of-
fline studies. For medium groups, the two most popular
recommendation functions are Least Misery under Overlap
Similarity and Aggregated Voting under Overlap Similarity.
This behavior can be explained as follows: first, we show in
Figure 7 that regardless of the recommendation function, user
satisfaction decreases when group size increases. Furthermore,

11

for a constant k, the effectiveness of the feedback box de-
creases with increased group size. Hence when the group size
increases, the workers fall back to simpler recommendation
functions such as Least Misery with Overlap Similarity and
Aggregate Voting with Overlap Similarity.

E. Recommendation Robustness: Effectiveness and Runtime

Recommendation robustness is set as a soft constraint,
which could further be tuned (see Section VI). For example,
to achieve a robustness weight of 20% after the preference
update of a user with k = 20,m = 125, n = 75, the previous
recommendation needs to be added 15 times.

We experimentally demonstrate the effectiveness of robust-
ness to counterbalance the effect of feedback box and ensure
overall group satisfaction, when multiple users use feedback
box. In Figure 11, X-axis varies the percentage of preference
updates, with a fixed robustness weight of 20%, whereas, in
Figure 12, we vary the robustness weight in X-axis with a fixed
preference update of 20%. The Y-axis measures the difference
in group satisfaction before and after the preference updates.
Even though feedback box maximizes the preference of indi-
viduals who use it, but with appropriately designed robustness
weights, the overall group satisfaction could be preserved
significantly (the y-axis measures the absolute difference in
group satisfaction between generated recommendation with-
out feedback box, and recommendation with feedback box
and robustness weight). Finally, as Figure 13 demonstrates,
robustness is scalable as increasing robustness weight results
in very small increase in runtime.

VIII. RELATED WORK

Our work is the first ever one to study flexible preferences
in group recommendations in conjunction with the Boolean
feedback model. The proposed idea of feedback box is novel
and is not studied earlier.

Context Aware Recommendation: Previous studies have
shown that users’ mood, context and company (other users)
may affect their preferences [6], [7].These works presents
a multidimensional approach to recommender systems that
can provide recommendations based on additional contextual
information (such as time, location and accompanying-people)
besides the typical information on users and items. These
works also support multiple dimensions, extensive profiling,
and hierarchical aggregation of recommendations [22].
Unlike these works, we do not aim at analyzing the factors
that trigger such updates, nor do we attempt to design the
recommendation semantics at the context of these factors.
Instead, we propose techniques to accommodate dynamic
updates in an effective and efficient manner.
Group Recommendation: The task of group
recommendation [4], [1], [23] has attained significant
research attention in recent past. There are two prevalent
approaches in group recommendation computation [3]: virtual
user and recommendation aggregation. Similar to most of
the existing research, we adopt the latter for its flexibility. It
has been also argued that the presence of appropriate group

recommendation semantics is of paramount importance in
successful group recommendation process. The objective of
this research is not proposing new group recommendation
semantics, rather, we leverage existing semantics in the
analysis of the feedback box.

IX. CONCLUSION

We motivate the need for flexible user preferences in group
recommendation and develop a feedback box that computes
for each user with evolving preferences, the best feedback to
provide to maximize her satisfaction in the generated recom-
mendation. We present robustness to counterbalance the effect
of feedback box and ensure group satisfaction. We present a
rigorous theoretical and empirical study that corroborates the
usefulness of this box.

REFERENCES

[1] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu, “Group
recommendation: Semantics and efficiency,” PVLDB, vol. 2, no. 1, pp.
754–765, 2009.

[2] L. Boratto, S. Carta, A. Chessa, M. Agelli, and M. L. Clemente, “Group
recommendation with automatic identification of users communities,” in
Web Intelligence/IAT Workshops, 2009, pp. 547–550.

[3] A. Jameson and B. Smyth, “Recommendation to groups,” P. Brusilovsky,
A. Kobsa, and W. Nejdl, Eds., 2007.

[4] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl, “Polylens: a
recommender system for groups of users,” in ECSCW, 2001.

[5] D. P. Myatt, “On the theory of strategic voting,” University of Oxford,
Department of Economics, Economics Series Working Papers 186, 2004.

[6] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” TKDE, vol. 17, no. 6, pp. 734–749, Jun. 2005.

[7] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, “In-
corporating contextual information in recommender systems using a
multidimensional approach,” ACM Trans. Inf. Syst., Jan. 2005.

[8] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley, 1999.

[9] S. B. Roy, G. Das, S. Amer-Yahia, and C. Yu, “Interactive itinerary
planning,” in ICDE, 2011.

[10] F. P. Preparata and M. I. Shamos, Computational geometry: an intro-
duction, 1985.

[11] J.-H. Lin and J. S. Vitter, “Approximation algorithms for geometric
median problems,” 1992.

[12] D. Hochbaum, “Heuristics for the fixed cost median problem,” Math
Programming, vol. 22, pp. 148–162, 1982.

[13] G. Cornuejols, G. Nemhauser, and L. Wolsey, “The uncapacitated facility
location problem,” in Discrete Location Theory, 1990, pp. 119–171.

[14] P. Bose, A. Maheshwari, and P. Morin, “Fast approximations for
sums of distances, clustering and the fermat-weber problem,” Comput.
Geometry., 2003.

[15] R. Chandrasekaran and A. Tamir, “Algebraic optimization: The fermat-
weber location problem,” Math. Program., vol. 46, pp. 219–224, 1990.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness, 1990.

[17] S. Fujishige, Submodular Functions and Optimization. Elsevier, 2005.
[18] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations

for maximizing submodular set functions–i,” Mathematical Program-
ming, 1978.

[19] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” in Maurer,
H., Ed., Cambridge, MA, USA. Springer-Verlag, 1991, pp. 185–208.

[20] K. Fischer, B. Gartner, and M. Kutz, “Fast smallest-enclosing-ball
computation in high dimensions,” in ESA, 2003, pp. 630–641.

[21] P. Kumar, J. S. B. Mitchell, and E. A. Yildirim, “Approximate minimum
enclosing balls in high dimensions using core-sets,” ACM JEA, 2003.

[22] K. Stefanidis, N. Shabib, K. Nørvåg, and J. Krogstie, “Contextual
recommendations for groups,” in ER Workshops, 2012, pp. 89–97.

[23] K. McCarthy, M. Salamó, L. Coyle, L. McGinty, B. Smyth, and P. Nixon,
“Cats: A synchronous approach to collaborative group recommendation,”
in FLAIRS Conference, 2006, pp. 86–91.

12

	Introduction
	Preliminaries
	Interaction Model
	Data Model
	User Preference Model
	Item Recommendation
	Group Recommendation Functions

	Problem Definitions
	Recommendation Generation
	Feedback Generation

	Summary of Results

	Aggregated Voting Consensus
	Overlap Similarity
	Generating Recommendations
	Generating New Feedback Vector

	Hamming Distance
	Generating Recommendations
	Generating New Feedback Vector

	Least Misery Consensus
	Overlap Similarity
	Generating Recommendations
	Generating New Feedback Vector

	Hamming Distance
	Generating Recommendations
	Generating New Feedback Vector

	Non-Boolean Preference Models
	Recommendation Robustness
	Experiments
	Summary of Experimental Results
	Data Preparation
	Performance Experiments
	Recommendation Generation
	Feedback Box

	Quality Experiments
	Offline Quality Experiments
	Online User Study

	Recommendation Robustness: Effectiveness and Runtime

	Related Work
	Conclusion
	References

