
Query Hidden Attributes in Social Networks
Azade Nazi†, Saravanan Thirumuruganathan†, Vagelis Hristidis‡†, Nan Zhang††, Khaled Shaban‡, Gautam Das†

†University of Texas at Arlington; ‡†University of California, Riverside; ††George Washington University; ‡Qatar University
†{azade.nazi@mavs, saravanan.thirumuruganathan@mavs, gdas@cse}.uta.edu, ‡†vagelis@cs.ucr.edu,

††nzhang10@gwu.edu, ‡khaled.shaban@qu.edu.qa

Abstract—Microblogs and collaborative content sites such as
Twitter and Amazon are popular among millions of users who
generate huge numbers of tweets, posts, and reviews every day.
Despite their popularity, these sites only provide rudimentary
mechanisms to navigate their sites, programmatically or through
a browser, like a keyword search interface or a get-neighbors
(e.g., friends) interface. Many interesting queries cannot be
directly answered by any of these interfaces, e.g., find Twitter
users in Los Angeles that have tweeted the word “diabetes” in
the last year. Note that the Twitter programming interface does
not allow conditions on the user’s home location. In this paper,
we introduce the novel problem of querying hidden attributes
in microblogs and collaborative content sites by leveraging the
existing search mechanisms offered by those sites. We model
these data sources as heterogeneous graphs and their two key
access interfaces, LocalSearch and ContentSearch, which search
through keywords and neighbors respectively. We show which of
these two approaches is better for which types of hidden attribute
searches. We conduct experiments on Twitter, Amazon, and
RateMDs to evaluate the performance of the search approaches.

I. INTRODUCTION

Motivation: Microblog sites such as Twitter, Instagram and
Tumblr, and collaborative content sites like Amazon and Yelp
are regularly used by millions of users who generate huge
numbers of tweets, posts, and reviews every day. Despite their
popularity, these sites only provide rudimentary mechanisms to
navigate their sites like primary keyword search interface or a
graph based browsing interface. In keyword search interface,
a user expresses her query through one or more keywords.
On the other hand, a graph based browsing interface allows
users to navigate similar results. For example, in Amazon it
is possible to search the product via the search box, or given
a product, go to the related products (such as those that were
recommended or belong to the same product category). In
Twitter, it is possible to search for users (or tweets) using
keywords and also view the followers and followees of a user.

These interfaces are adequate for some types of queries, e.g.,
find users that have mentioned “diabetes,” but cannot support
queries on “hidden attributes.” For example, the number of re-
views of a product (in Amazon) or the number of followers of
a user who created the tweet (in Twitter) are hidden attributes.
Currently, it is not possible for a user to express sophisticated
queries over the both visible and hidden attributes or leverage
multiple access mechanisms of keyword search interface and
graph based browsing interface.

Enabling queries on hidden attributes would enable an-
swering interesting questions. In health domain, Medicine 2.0
applications foster online communities where patients discuss

their own healthcare decisions and experiences [1]. These
applications allow clinical researchers and citizen scientists to
conduct crowdsourced health studies that complement tradi-
tional clinical trials in the public health research ecosystem
[2]. This knowledge is important: 24% of adults that use
the Internet have read online reviews of a particular drug or
medical treatment [3]. For example, consider a health con-
scious user who wishes to buy book from “Health&Fitness”
category in Amazon. However, she wishes to consider only
those books that were positively reviewed by New York Times
(NYT) book review1. The user has two choices that are both
unappealing. She could peruse the entire list of books in NYT
that are not categorized by type or she could do a keyword
search for “New York Times book review” in Amazon whose
results are inadequate. Because the books most relevant to her
mention the positive review in their description, this could
be considered as a query over hidden attribute that is not
sufficiently supported by traditional interfaces.
Our Problem: In this paper, we aim to leverage and synthesize
the existing search mechanisms offered by the microblog
and collaborative content sites (CCS) to answer sophisticated
queries over the both visible and hidden attributes which
cannot be directly specified using their sites. Our objective is to
propose different approaches to retrieve N relevant results that
satisfy the user’s query. It should be pointed out that we can
only use the publicly available search mechanisms provided by
the site. Most of the popular microblogs and CCS, offer search
API calls to allow to search on their sites. However, they
impose strict access restrictions (e.g., API rate limits), e.g.,
Twitter allows only 180 queries per 15 minutes and Amazon
API for the initial usage allows one request per second. Thus, a
main challenge is to retrieve the relevant results with minimal
API calls, i.e., query cost. To the best of our knowledge, our
work is the first to consider enabling sophisticated queries
on the microblogs and CCS via their public interface and
minimizing the number of API calls.
Outline of Our Contributions: Microblogs and CCS contain
heterogeneous network and content information. For exam-
ple, Twitter is a social network where users are connected
by the follower-followee relationships, and tweets are the
content associated with the users. Thus, we model it as a
graph contains the heterogeneous information and we use
this model to retrieve the relevant results that satisfies the
user query. Specifically, we discuss two orthogonal approaches

1http://www.nytimes.com/pages/books/review/

Local Search, and Content Search in the graph to
answer the user query. Local Search exploits the ho-
mophily and assortativity property in relational network of
the microblogs/CCS and search for the relevant results in
neighborhood/community. In contrast, Content Search
identifies some keywords that could be used as a proxy for the
original search query. We show that the performance of these
approaches depends on the query, e.g., if most of the query
results belong to a community, Local Search performs
better, while Content Search outperforms when the query
can be converted to a set of precise keyword queries. We
conduct exhaustive and comprehensive experiments on Twitter,
Amazon, and RateMDs that show the performance of the local
search and content search approaches for variety of the queries.
In summary, we make the following main contributions:
• We model microblogs and collaborative content sites as

heterogeneous graphs.
• We have identified and modeled two basic orthog-

onal data access approaches, Local Search, and
Content Search to answer the queries.

• We present experiments on Twitter, Amazon, and
RateMDs to show the performance of the both approaches
for a diverse set of queries.

The remainder of this paper is organized as follows. The
preliminaries and problem definition are described in Sec-
tion II. Proposed graph model is introduced in Section III.
The navigation approaches are discussed in IV. Experimental
study is described in Section V. Finally, we describe related
work in Section VI and conclude the paper and discuss the
future work in Section VII.

II. PRELIMINARIES

In this section, we first describe a data access model that
abstracts the API interfaces provided by the microblogs and
CCS followed by problem definition.

A. Data access model

All the microblogs and CCS allow users to search on their
websites through a search interface. There are a number of
content-based actions or information in those sites such as
sending tweets, exchanging messages, or placing wall posts in
microblogs and product details, user reviews in CCS. In this
paper, we consider Twitter and Amazon as the examples of
the microblogs and CCS but it can be applied on any other
sites that provide a search interface (regardless of whether
they provide an equivalent API based interface). The set of
all the keywords or phrases of the contents in the set is
denoted as K while the set of entities (such as products or
items) of the site are denoted as U . Search interface allows
to query on the visible attributes, e.g., Twitter search interface
supports search based on keywords, location, people, date, and
etc. Similarly, the search interface in Amazon allows users
to search over the product attributes, price, average customer
reviews and etc. However, there are other attributes which
we call as hidden attributes, that cannot be queried using the
search interfaces. For example, number of followers of user

who created the tweet or the number of reviews of a product
could be considered as hidden attributes. Note that hidden is
defined with regard to whether it can be searched via the search
mechanism and the attribute itself is visible.

Most of the popular microblogs like Twitter, and CCS such
as Amazon, offer search API calls to allow to search on the
hidden attributes of an entity in their sites. For example, in
Twitter, there is an API to retrieve number of followers of
a specific user. Although search API calls can be used to
search over the hidden attributes of an entity, they cannot
directly answer sophisticated queries that involve combination
of attributes, e.g., neither the Twitter search interface nor
its search API can directly return the users with more than
hundreds followers. Similarly, products with more than hun-
dreds reviews cannot be directly specified using the Amazon’s
existing search mechanisms. Moreover, most of the microblogs
and CCS impose strict access restrictions (e.g., API rate
limits), e.g., Twitter allows only 180 queries per 15 minutes
and Amazon API allows one request per second.

B. Problem Definition

In this paper, we strive to answer sophisticated queries
Q of the from SELECT U ′ FROM U WHERE CONDITION
where U is the set of all entities, i.e., users or products, U ′ ⊆
U , and CONDITION is specified over the combination of the
visible and hidden attributes that cannot be directly specified
through the site’s existing search mechanisms. In other words,
the predicates in CONDITION not only can be over any visible
attributes in the sites but also contains condition over the
hidden attributes. We define query cost C as the total number
of API calls required to answer the query q ∈ Q. Thus, the
problem can be formally defined as follows.

PROBLEM. Given a microblog/CCS, a sophisticated query q ∈
Q, desired number of results N , design an efficient algorithm
to retrieve set of N entities U ′ ⊆ U that satisfy the query q,
|U ′| ≤ N , with minimal query cost C.

III. PROBLEM MODELING

Any microblog or collaborative content sites, as shown
in Figure 1, contains heterogeneous information and can be
naturally modeled as a graph G = (V = {VU ∪ VK}, E =
{Euu′ ∪ Euk}). There are two type of nodes, i.e., VU is a
set of nodes associated with the entities U , VK is the set of
nodes corresponding to available contents K. There are two
type of edges, i.e., intra-edges Euu′ ⊆ (VU × VU), and inter-
edges Euk ⊆ (VU × VK). Intra-edges, Euu′ , are the locality
based edges which are among the entities, and inter-edges Euk

are the content based edges between entity nodes and content
nodes. Note that since intra-edges, Euu′ represents the network
among the entities, it can either be directed or undirected. For
example, Twitter social network is a directed network while
the Amazon product network is an undirected network. For
the purposes of our paper, we consider them as undirected.

Graph Models for Twitter and Amazon: Figures 2 and 3
show the heterogeneous graph models of the Twitter and
Amazon denoted as GT and GA respectively. In Twitter graph

u1

u2

un

k1

k2

km

Entities:UContents:K

... ...

Fig. 1. Microblogs or Collaborative content
sites graph model G.

a1

a2

an

a3

Health

Education

Donation

Doctor

...

Fig. 2. Instantiation of the Twitter graph
model GT .

pn

p1

p2

Health &
Fitness

Comics

Law

Medical...
Fig. 3. Instantiation of the Amazon graph
model GA.

model GT (Figure 2), VU corresponds to the Twitter users’
account A = {a1, a2, . . . } and the locality based edges Euu′

represents the follower-followee relationship among the users.
Content nodes VK correspond to the keywords of the tweets
and the inter-edges represent keywords are tweeted by the
user, e.g. (ai, kj) ∈ Euk exists if user ai tweets about kj . For
example, in Figure 2, user u1 had created tweets containing
keywords Health and Education. Inter-edges can be used
to find users who have tweeted using a common keyword
in Twitter. Similarly, Amazon can be modelled as a graph
GA in Figure 3, where VU correspondent to the Amazon
products P = {p1, p2, . . . } and the locality based edges
Euu′ represents the similar products which is a symmetric
relationship, i.e. undirected network among products. Content
nodes VK correspond to the product attribute values. The
content based edges or intra-edges, Euk represent details of a
product whereby an edge (pi, kj) ∈ Euk exists if product pi
has attribute value kj . Inter-edges can be used to find products
with similar attributes in Amazon.

Given a user query q ∈ Q and number of results N , the set
of relevant entities U ′ which satisfy the user query could be
considered as a (possibly disconnected) subgraph of the entity
nodes VU in heterogeneous graph G. Thus, the problem is to
determine how to navigate the graph G using locality/content
based edges Euu′ and Euk such that N entities U ′ that satisfy
the user query are identified with minimal query cost C.

Mapping Edge Navigation to API Calls: Given the
heterogeneous graph G, we can see that various graph op-
erations over G can easily be translated to a specific API call
provided by the corresponding microblog/CCS. In our paper,
we consider three operations over the nodes and edges of G.
Each of them correspond to an API call and increases the
query cost by 1. The operations are:

1) GET-NODE-DETAILS: Given an entity node u, this
graph operation provides details about the node. For ex-
ample, this might correspond to getting user profile de-
tails in Twitter (via users/show or users/lookup
API) or get details of a product in Amazon (via
ItemLookup API).

2) GET-LOCAL-NEIGHBORS: Given an entity node u,
this graph operation produces a list of entities that
are connected through intra-edges with u. For Twit-
ter, this might correspond to getting the list of fol-
lowees or followers of a user (via friends/list or

followers/list APIs respectively). For Amazon,
this corresponds to getting list of similar products (via
SimilarityLookup API).

3) GET-CONTENT-NEIGHBORS: Given an entity node u
and a keyword k, this operation retrieves a list of entities
that are connected through content based edges with u
through keyword k. For Twitter this might correspond
to search/tweets or users/search APIs. For
Amazon, this corresponds to ItemSearch API.

Next we discuss two orthogonal approaches Local
Search, and Content Search in graph G in order to
answer the queriesQ. Since each of them uses only one type of
edges, i.e., locality based edges Euu′ , or content based edges
Euk, we call them as single edge navigation approaches.

IV. SINGLE EDGE NAVIGATION APPROACHES

Local Search: The homophily and assortativity property
posits that similar entities are more likely to connect to each
other [4]. Using this insight, local search approach traverses
locality based edges, Euu′ , in graph G in order to find similar
entities who satisfies query q. Specifically, it starts with a
seed node s ∈ VU and tries to find other relevant entity
nodes from the neighbors of the seed node. Once additional
nodes are identified, this process is continued recursively.
Algorithm 1 describes the pseudocode for LocalSearch
Algorithm. Given the query q, graph G, seed node s ∈ VU , it
returns a set of entities U ′ ⊆ U of size N that satisfies q. Note
that, in lines 5 and 7, the query cost increases because of an
API call to find the locality based edges associated with the
entity node s and API calls to check if entity u satisfies query
q. Of course, depending on the sophisticated query the number
of API calls to check whether a node satisfies it varies.

We can use multiple heuristics to reorder the entity nodes
to identify relevant nodes with lower query cost. For example,
starting from a seed node that already satisfies the query q
can reduce the query cost. For example, to identify users from
California, a good strategy is to start with some users from
California and look at his/her neighbors. It is highly likely that
Californians will have other Californians as their followers.
Moreover, local search can be improved by prioritizing the
neighboring nodes by the number of common neighbors with
the previous results. Because entities that have more common
neighbors with the previous results is highly likely to satisfy
the query (which we also verify empirically in Experiments).

Algorithm 1: LocalSearch Algorithm (LS)
Input : Graph G, Query q, Seed node s ∈ VU , Number of

results N
Output: Set of entities U ′ ⊆ U satisfies q
1 U ′ = {s}, Q = Queue(), C = 0;
2 Q.enqueue(s);
3 while |U ′| < N do
4 s = Q.dequeue();
5 SimilarEntities = GET-LOCAL-NEIGHBORS(s)

C = C + 1;
6 for u ∈ SimilarEntities and u /∈ U ′ do
7 C = C + Cost to verify if u satisfies q
8 if u satisfies q then
9 Q.enqueue(u)

10 U ′ = U ′ ∪ {u}

11 return U ′, C

Content Search: An alternate approach is to identify some
keywords that could be used as a proxy for the original search
query. It is possible that users from California use keywords
like Silicon Valley, Palo Alto etc. Hence, searching for these
keywords might help us identify users from California. Of
course, the right set of keywords must be discriminative -
a reasonably broad keyword that matches more Californians
than non-Californians. Algorithm 2 describes the pseudocode
for ContentSearch Algorithm. It starts with a set of seed
nodes S, and identifies l discriminative keywords K ′ ⊂ K
associated with the S. Then, it finds other relevant nodes from
the neighbors of those content nodes. The list of discriminative
keywords are updated periodically (e.g. once every h new en-
tity nodes are obtained). This process is continued recursively
until N relevant results found. In Algorithm 2 lines 1 and 9,
the query cost increases by h because there are h new entities
in S each of which require 1 API call to find the associated
contents. The query cost also increases in line 4, by the number
of API calls to check the satisfiability of entity u for query
q. Given the contents (tweets of a user), FindKeywords
function returns the most discriminative keywords among the
entities. We use the tfidf (term frequencyinverse document
frequency) technique [5] to select keywords with high term
frequency among the relevant entities S and a low frequency
of the term in the whole collection of the contents K. The latter
could be obtained from random tweets from Twitter using the
random stream. We also filter out the common stop keywords
[5] among all the entities U .

V. EXPERIMENTS

A. Experimental Setup

Hardware and Platform: All our experiments were con-
ducted on a computer with 2.5 GHz Intel CPU with 8 GB
of RAM. The algorithms were implemented in Python 2.7.
Datasets: We tested our algorithm on three diverse real-
world websites - Twitter, Amazon and RateMDs. Twitter and

Algorithm 2: ContentSearch Algorithm (CS)
Input : Graph G, Query q, set of seed nodes S ⊂ U

(|S| = h), Number of results N
Output: Set of entities U ′ ⊆ U satisfies q
1 U ′ = {S}, C = h, K ′ = FindKeywords(U ′)
2 while |U ′| < N do
3 for u ∈ GET-CONTENT-NEIGHBORS(S,K ′) and

u /∈ U ′ do
4 C = C + Cost to verify if u satisfies q
5 if u satisfies q then
6 U ′ = U ′ ∪ {u}
7 if |U ′| mod h == 0 then
8 K ′ = FindKeywords(U ′)
9 C = C + h;

10 return U ′, C

Amazon were chosen due to their popularity and accessibility
of their developer API. RateMD, which does not provide any
API, was chosen to highlight the effectiveness and generality
of our method even when such API access is not available.

Twitter: Twitter is a popular microblog platform. We briefly
summarize the graph modelling for Twitter (see Figure 2 for
a graphical representation). Entity nodes is the set of user
accounts in Twitter while content nodes is the set of all distinct
keywords from tweets. The intra-edges represent the follower-
followee relationship among the users. The inter-edges connect
a user u with the keywords that were contained in at least one
of u’s tweets. We used Twitter’s API2 to retrieve details about
accounts and their neighbors. Twitter supports rudimentary
search over users but does not support many operators. Search
for the number of followers, location, number of tweets etc are
not currently possible and they correspond to hidden attributes.

Amazon: Amazon is a pre-eminent e-commerce website
that serves as a collaborative content site by allowing users
to post reviews about the products. We briefly summarize the
graph modelling for Amazon (see Figure 3 for a graphical
representation). Entity nodes corresponds to various products
while content nodes is the set of product attributes and distinct
keywords from product description. The intra-edges connects
product p with other products returned by Amazon’s Simi-
larityLookup API. The inter-edges connect a product p with
other products that share product attributes or keywords from
description. We conducted experiments over products from
two domains - “Healthcare” and “Movies”. We used Amazon’s
Product Advertising API3 to retrieve details about products
and their neighbors. While Amazon provides a powerful and
extensive search interface, it does not allow user to search
based on useful predicates such as the number of reviews or
other information that are not in the product description (but
could be found instead in, say, reviews).

2https://dev.twitter.com/
3https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html

RateMDs: RateMDs 4 is a popular website where patients
can share their experiences with their physicians. The entity
nodes correspond to the physicians while the content nodes
correspond to their description (such as bio, credentials, re-
views etc). The intra-edges connect physicians from same hos-
pital or domain while inter-edges connect a physician p with
the keywords that can return p. RateMDs do not provide any
API access and its search interface is limited to information
such as gender, location, speciality etc. However, practical
attributes such as the languages spoken by the physician or
the list of insurance accepted are not searchable.
Algorithms: We evaluated two algorithms described in the
paper - LocalSearch (LS), and ContentSearch (CS). We set
the parameter h to 10% of N .
Performance Measures: The efficiency of our algorithms
is measured by the number of queries issued. For Twitter
and Amazon this corresponds to the number of API calls
while for RateMDs this measures the number of http requests
made. For a mapping between APIs and our abstract operators,
please refer to Section III. Note that a single invocation of
an operator might translate to multiple API calls, e.g., we
implemented GET-LOCAL-NEIGHBORS through Twitter’s
friends/list API which could return at most 200 results
per invocation. If a user has more than 200 friends, this might
incur a higher query cost.

B. Experimental Results
For each of the three datasets, we evaluated our algorithms

through diverse yet practical queries that were specified over
a combination of visible and hidden attributes. In this section,
we limit our discussion to a set of queries that are listed in Ta-
ble I. Note that none of these queries can be specified directly
through the search interface of the respective websites/APIs.
Health Related Queries: The first three queries for each
dataset (such as TQ1-TQ3) specify queries that are related to
health. The main observation is that LS is often very effective
when the set of users who satisfy the query form a tight
knit community and CS excels when the user query can be
converted effectively as a keyword search query.

For the Twitter queries TQ1 and TQ2, CS was able to
find alternate queries (such as Insulin for TQ1 and MD for
TQ2) that could return relevant results. For TQ3 however,
both performed equivalently while LS nudging CS slightly. As
part of our experiments, we observed that parents often form
support groups to support other parents with same ailment as
their kids. We expect LS to perform well for such queries.

For Amazon queries, AQ1 and AQ3, LS outperformed CS.
This is to be expected as users with similar sensibilities
(animal friendly or health savvy) often buy similar products.
For example, people who buy products endorsed by PETA
tend to buy other PETA endorsed products (recall that these
queries are within healthcare domain) resulting in Amazon
recommending those products in their product similarity API.
A similar dynamic exists for the queries in RateMDs as LS
performs well on all queries (RQ1-RQ3)

4https://www.ratemds.com

TABLE I
QUERIES FOR THE EXPERIMENTAL RESULTS

Website Id Query

Twitter TQ1 200 users who talk about Diabetes and have 5000
followers

Twitter TQ2 200 users with keyword healthcare in Bio
Twitter TQ3 200 users from Austin, Texas who have kids With

ADHD
Twitter TQ4 500 users who specify Location as California
Twitter TQ5 500 users who specify Location as Texas
Twitter TQ6 500 users who had at least 100 tweets over last

30 days
Amazon AQ1 200 products that certified cruelty free by PETA
Amazon AQ2 200 products from brands owned by P&G
Amazon AQ3 200 books that were positively Reviewed by NYT

book review
Amazon AQ4 500 movies that had at least 200 reviews in 2014
Amazon AQ5 500 movies with a runtime of at least 2 hours
Amazon AQ6 500 Point&Shoot cameras with at least 100 4-star

reviews or higher
RateMDs RQ1 100 Orthopedic Surgeons in Texas Who accept

UnitedHealthcare insurance
RateMDs RQ2 100 hospital facilities in New York with at least

10 5-star reviews
RateMDs RQ3 100 Psychiatrists in California who can speak

Spanish

General Queries: In order to show the wide applicability
of our algorithms, we also evaluated some queries over non-
health domains as diverse as Movies and Electronics (specifi-
cally Point&Shoot cameras). We can see that the behavior of
our algorithms are similar to Health related queries whereby
LS outperforms within the communities and CS is effective
if it finds keyword search query to return relevant results. We
also evaluated the query cost achieved by LS, and LS for
different values of N . Figure 9 shows that the query cost of
the LS and CS increases as N increases.

VI. RELATED WORK

Health-related Content in Social Media: Lu et al. studied
the content of three discussion boards, from an online health
community; they used one discussion board on diabetes and
two on cancer [6]. They found that drug-related postings
accounted for a larger fraction of topics discussed on the
diabetes board than the cancer boards. Zhang et al. analyzed
posts from a Facebook diabetes group and found that over 60%
of posts were providing information, emotional support (17%)
and eliciting information (12%) [7]. Wiley et al. [8] studied the
drugs-related chatter in social networks, specifically Twitter,
Google+ and Pinterest, and found that, compared to health
forums like WebMD, they are dominated by mentions of
Genitourinary (e.g., Viagra) and Nutritional drugs.
Third Party Crawling: Most of the hidden databases (this
includes microblogs and CCS) provide one or more of the
following input interfaces: (1) form based, (2) keyword based
and (3) graph browsing based. Existing work retrieve informa-
tion from the hidden databases using only one of the access
mechanisms. For example, [9] described optimal algorithms to

0

2000

4000

6000

8000

10000

12000

14000

TQ1 TQ2 TQ3

Q
u

e
ry

 C
o

st

LS CS

Fig. 4. Twitter Health Queries, N = 200

0

1000

2000

3000

4000

5000

6000

AQ1 AQ2 AQ3

Q
u

e
ry

 C
o

st

LS CS

Fig. 5. Amazon Health Queries, N = 200

0

500

1000

1500

2000

2500

3000

RQ1 RQ2 RQ3

Q
u

e
ry

 C
o

st

LS CS

Fig. 6. RateMDs Health Queries, N = 100

0

5000

10000

15000

20000

25000

30000

35000

40000

TQ4 TQ5 TQ6

Q
u

e
ry

 C
o

st

LS CS

Fig. 7. Twitter General Queries, N = 500

0

2000

4000

6000

8000

10000

12000

14000

16000

AQ4 AQ5 AQ6

Q
u

e
ry

 C
o

st

LS CS

Fig. 8. Amazon General Queries, N = 500

0

2000

4000

6000

8000

10000

12000

14000

16000

LS CS LS CS LS CS

N=50 N=200 N=500

AQ1 AQ2 AQ3

Fig. 9. Amazon General Queries by Varying
Number of Results (N)

crawl form based interfaces while [10] introduced algorithms
for crawling keyword based interfaces.The rise in popularity of
online social graphs has resulted in prior work such [11] and
[12] that study crawling online graphs. Our work differs from
these work as it seeks to crawl only the nodes that satisfy the
queries. [13] studies the problem of focussed crawling for web
pages that match a particular topic. However, no equivalent
techniques have been designed for other search interfaces.
[14] uses a similar graph based abstraction for microblogs.
However, it seeks to perform aggregate estimation over nodes
that satisfy a query rather than retrieving the nodes.

VII. CONCLUSION

In this paper, we introduce the novel problem of query-
ing hidden attributes in microblogs and CCS that leverages
available search mechanisms offered by them to search on the
visible and hidden attributes in their sites. We have identified
two approaches LocalSearch, and ContentSearch to
answer the queries. We conduct exhaustive and comprehensive
experiments on Twitter, Amazon, and RateMDs to show
which of these two approaches is better for which types of
hidden attribute searches. In the future, we plan to investigate
structural properties of the microblogs and CCS to improve
the efficiency of the search result using both approaches.

VIII. ACKNOWLEDGMENT

The work of Azade Nazi, Saravanan Thirumuruganathan
and Gautam Das was partially supported by National Sci-
ence Foundation under grants 0915834, 1018865 a NHARP
grant from the Texas Higher Education Coordinating Board,
and grants from Microsoft Research and Nokia Research.
Nan Zhang was supported in part by the National Science
Foundation under grants 0852674, 0915834, 1117297, and

1343976. Vagelis Hristidis was partially supported by National
Science Foundation grant 1216007 and a Samsung GRO grant.
Any opinions, findings, conclusions, and/or recommendations
expressed in this material, either expressed or implied, are
those of the authors and do not necessarily reflect the views
of the sponsors listed above.

REFERENCES

[1] T. H. Van De Belt, L. J. Engelen, S. A. Berben, and L. Schoonhoven,
“Definition of health 2.0 and medicine 2.0: a systematic review,” Journal
of medical Internet research, vol. 12, no. 2, 2010.

[2] M. Swan, “Scaling crowdsourced health studies: the emergence of a new
form of contract research organization,” Personalized Medicine, 2012.

[3] S. Fox, “The social life of health information, 2011. pew internet &
american life project,” 2011.

[4] S. Wasserman, Social network analysis: Methods and applications.
Cambridge university press, 1994, vol. 8.

[5] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-
tion retrieval. Cambridge university press Cambridge, 2008, vol. 1.

[6] Y. Lu, P. Zhang, J. Liu, J. Li, and S. Deng, “Health-related hot topic
detection in online communities using text clustering,” PloS one, 2013.

[7] Y. Zhang, D. He, and Y. Sang, “Facebook as a platform for health
information and communication: a case study of a diabetes group,”
Journal of medical systems, vol. 37, no. 3, pp. 1–12, 2013.

[8] M. T. Wiley, C. Jin, V. Hristidis, and K. M. Esterling, “Pharmaceutical
drugs chatter on online social networks,” JBI, 2014.

[9] C. Sheng, N. Zhang, Y. Tao, and X. Jin, “Optimal algorithms for
crawling a hidden database in the web,” VLDB, 2012.

[10] J. L. Wolf, M. S. Squillante, P. Yu, J. Sethuraman, and L. Ozsen,
“Optimal crawling strategies for web search engines,” in WWW, 2002.

[11] S. Ye, J. Lang, and F. Wu, “Crawling online social graphs,” in APWEB.
IEEE, 2010.

[12] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Practical
recommendations on crawling online social networks,” Selected Areas
in Communications, IEEE Journal on, vol. 29, no. 9, 2011.

[13] S. Chakrabarti, M. Van den Berg, and B. Dom, “Focused crawling: a new
approach to topic-specific web resource discovery,” Computer Networks,
1999.

[14] S. Thirumuruganathan, N. Zhang, V. Hristidis, and G. Das, “Aggregate
estimation over a microblog platform,” in SIGMOD, 2014.

