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ABSTRACT
In this paper, we introduce a novel, general purpose, technique for
faster sampling of nodes over an online social network. Specif-
ically, unlike traditional random walk which wait for the conver-
gence of sampling distribution to a predetermined target distribu-
tion - a waiting process that incurs a high query cost - we de-
velop WALK-ESTIMATE, which starts with a much shorter ran-
dom walk, and then proactively estimate the sampling probability
for the node taken before using acceptance-rejection sampling to
adjust the sampling probability to the predetermined target distri-
bution. We present a novel backward random walk technique which
provides provably unbiased estimations for the sampling probabil-
ity, and demonstrate the superiority of WALK-ESTIMATE over
traditional random walks through theoretical analysis and extensive
experiments over real world online social networks.

1. INTRODUCTION
Online social networks often feature a web interface that only

allows local-neighborhood queries - i.e., given a user of the online
social network as input, the system returns the immediate neighbors
of the user. In this paper, we address the problem of enabling third-
party analytics over an online social network through its restrictive
web interface. As demonstrated by a wide range of existing ser-
vices (e.g., Twitris, Toretter, AIDR), such third-party analytics ap-
plications benefit not only social network users, social scientists,
but the entire society at large (e.g., through epidemic control).

1.1 Problem of Existing Work
The restrictive local-neighborhood-only access interface makes

it extremely difficult for a third party to crawl all data from an on-
line social network, as a complete crawl requires as many queries as
the number of users in the social network. To address this challenge
and enable analytics tasks such as aggregate estimation through the
restrictive access interface, many existing studies resort to the sam-
pling of users from the online social network. If we consider a
social network as a graph, the idea here is to first draw a sample
of nodes from the graph, and then generate (statistically accurate)
aggregate estimations based on the sample nodes.

The nature of the interface limitation - i.e., allowing only local-
neighborhood queries - makes random walk based Monte Carlo
Markov Chain (MCMC) methods an ideal fit for the sampling of
users from an online social network. Intuitively, a random walk
starts from an arbitrary user, and then randomly moves to one of its
neighbors selected randomly according to a pre-determined prob-
ability distribution (namely the transition probability). The move-
ment continues for a number of steps, namely the “burn-in period”
before the node being selected is taken as a sample.

A critical problem with the existing random walk techniques,
however, is the long burn-in period it requires and, therefore, the

significant query cost it incurs for drawing a sample. Since many
online social networks limit the number of queries one can issue
(e.g., from an IP address) within a period of time (e.g., Twitter
allows , every 15 minutes, only 15 API requests to retrieve ids of
a user’s followers) the high query cost limits the sample size one
can draw from the social network and, consequently, the accuracy
of analytics tasks.

To understand why the burn-in period is required, an important
observation is that, before a sample can be used for analytical pur-
poses, we must know the sampling distribution - i.e., the probabil-
ity for each node in the graph to be sampled - because without such
knowledge, one might “over-consider” certain parts of the graph in
the analytics tasks, leading to errors such as biased aggregate es-
timations. However, since a third party has no knowledge of even
the global graph topology, it seems infeasible to compute the sam-
pling distribution for a random walk. Fortunately, the property of
MCMC methods ensures that, as a random walk grows longer, the
sampling distribution becomes asymptotically close to a station-
ary distribution that can be computed from the design of transition
probabilities alone. For example, with a simple random walk (fea-
turing a uniform transition distribution - see Section 2.2 for details),
the stationary probability for a node to be sampled is always pro-
portional to its degree, no matter how the global graph topology
looks like.

It is also the availability of such a stationary distribution that
leads to the mandate of a burn-in period. Note that, while the
MCMC property ensures asymptotic convergence to the station-
ary distribution, the actual convergence process can be slow - and
the length of burn-in required is essentially uncomputable without
knowledge of the entire graph topology [19, 24]. Facing this prob-
lem, what the existing techniques can do is to either set a conser-
vatively large burn-in period [23, 24], or use one of the heuristic
convergence monitors and “wait” for the sampling distribution to
converge to its stationary value. In either case, the sampling process
may require a large number of queries during the burn-in period.

1.2 Our Idea: WALK-ESTIMATE
In this paper, our objective is to significantly reduce the query

cost of node sampling over an online social network by (nearly)
eliminating the costly waiting process. Of course, as one can see
from the above discussions, if we do not wait for the convergence
to stationary distribution, we must somehow estimate the probabil-
ity for our short walk to take a node as a sample (i.e., the node’s
sampling probability) before we can use the node as a sample. This
is exactly what we do - i.e., we introduce a novel idea of having a
(much) shorter, say t-step, walk, before taking a node v as a sam-
ple candidate, but follow it up with a proactive process which esti-
mates v’s sampling probability pt(v) - i.e., the probability for our
walk to reach node v at Step t, so that we can then use acceptance-
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rejection sampling to “correct” the sampling probability to the de-
sired distribution. As we shall prove in the paper, even though the
acceptance-rejection step introduces additional query cost, the sav-
ings from having a shorter walk in the first place far outweighs the
additional cost, leading to a significantly more efficient sampling
process.

Based on this idea, we develop Algorithm WALK-ESTIMATE.
The algorithm takes as input a random walk based MCMC sampler,
and produces samples according to the exact same distribution as
the input sampler - i.e., the stationary distribution of the MCMC
process. One can see that this design makes WALK-ESTIMATE
transparent to the desired target distribution, making it a swap-in
replacement for any random walk sampler being used (e.g., simple
random walk [19, 21], Metropolis-Hastings random walk [19, 21].
As we shall demonstrate through theoretical analysis and experi-
mental evaluation over real-world social networks, while the proac-
tive probability-estimation process may consume a small number of
queries, the significant savings from the shorter walk more than off-
set the additional consumption, and lead to a much more efficient
sampling process over online social networks.

1.3 Outline of Technical Results
We now provide an overview of the main technical results in

the design of WALK-ESTIMATE. The algorithm is enabled by two
main components: WALK and ESTIMATE. The WALK compo-
nent determines how many, say t, steps to (randomly) transit before
taking a node v as a candidate (for sampling), and then calls upon
the ESTIMATE component for an estimation of the probability for
the walk to reach v after t steps. Based on the estimated proba-
bility, WALK then performs acceptance-rejection sampling on v to
determine if it should be included in the final (output) sample.

For the WALK component, we start by developing IDEAL-WALK,
an impractical sampler which makes two ideal-case assumptions:
One is access to an oracle that precisely compute the pt(v), i.e., the
probability for the walk to reach a node v at Step t. The other is
access to certain global topological information about the underly-
ing graph - e.g., |E|, the total number of edges in the graph, D(G),
the graph diameter, λ, the spectral gap of the transition matrix, and
dmax, the maximum degree of a node in the graph - so that IDEAL-
WALK can determine the optimal number of steps t to walk. We
rigidly prove that no matter what the target distribution is (barring
certain extreme cases, e.g., when the distribution is 1 on the starting
node and 0 on all others), IDEAL-WALK always outperforms its
corresponding traditional random walk algorithm. Further, it also
produce samples with absolutely zero bias (while random walks of-
ten cannot, depending on the graph topology). We also demonstrate
through analysis of multiple theoretical graph models the signifi-
cance of such efficiency enhancements for the sampling process.

Of course, IDEAL-WALK makes two unrealistic assumptions,
which we remove through the design of Algorithms WALK and
ESTIMATE, respectively. Algorithm WALK removes the assump-
tion of access to global parameters by requiring access to only one
parameters (besides the local neighborhood of the current node):
D̄(G), i.e., an upper bound on the diameter of the graph - which is
often easy to obtain (e.g., it is commonly believed that 8 to 10 is a
safe bet for real-world online social networks [3, 23]).

Algorithm ESTIMATE, on the other hand, estimates pt(v), i.e.,
the probability for Algorithm WALK to sample node v at Step t. To
illustrate our main idea here, we start by developing UNBIASED-
ESTIMATE, a simple algorithm which takes a backward random
walk from Node v for estimating pt(v). We rigidly prove the unbi-
asedness of the estimation produced by UNBIASED-ESTIMATE.
Nonetheless, we also note its problem: a high estimation variance

which grows rapidly with the number of backward steps one has to
take for producing the estimation. Since the error of estimation is
determined by both bias and variance, the high variance produced
by UNBIASED-ESTIMATE introduces significant error in the es-
timation of pt(v).

To address the problem of UNBIASED-ESTIMATE, we intro-
duce two main ideas for variance reduction in developing Algo-
rithm ESTIMATE, our final algorithm for estimating pt(u): One is
initial crawling, i.e., the crawl of the h-hop neighborhood (where h
is a small number like 2 or 3) of the starting node to reduce the num-
ber of backward steps required by Algorithm ESTIMATE, and the
second is weighted sampling, i.e., to carefully design the transition
matrix of the backward random walk process to reduce the variance
of estimation. We shall demonstrate through experimental evalua-
tion that Algorithm ESTIMATE significantly reduces the estima-
tion variance for pt(u). Finally, we combine Algorithms WALK
and ESTIMATE to produce Algorithm WALK-ESTIMATE.

1.4 Summary of Contributions
We make the following main contributions in this paper:
• We propose a novel idea of WALK-ESTIMATE, a swap-in

replacement for any random walk sampler which forgoes the
long burn-in period and instead uses a proactive sampling
probability estimation step to produce samples of a desired
target distribution.
• To demonstrate the superiority of our WALK step - i.e., per-

forming a short random walk followed by acceptance-rejection
sampling to reach the target distribution - we rigidly prove
that, given a reasonable sample-bias requirement, no mat-
ter what the graph topology or target distribution is (barring
certain extreme cases, e.g., when the distribution is 1 on the
starting node and 0 on all others), a short random walk fol-
lowed by acceptance-rejection sampling always outperforms
its corresponding traditional random walk process.
• For the ESTIMATE step, we introduce a novel UNBIASED-

ESTIMATE algorithm which uses a small number of queries
to produce a provably unbiased estimation of the sampling
probability of a given node. In addition, we also propose two
heuristics, initial crawling and weighted sampling, to reduce
the variance (and consequently error) of an estimation.
• Our contributions also include extensive experiments over

real-world online social networks such as Google Plus, which
confirm the significant improvement offer by our WALK-
ESTIMATE algorithm over traditional random walks such as
simple random walk and Metropolis-Hastings random walk.

1.5 Paper Organization
The rest of the paper is organized as follows. We discuss pre-

liminaries in Section 2. Then, in Section 3, we present an overview
of our WALK-ESTIMATE algorithm, and outline the key technical
challenges for this design. In Sections 4 and 5, we develop the two
main steps, WALK and ESTIMATE, respectively. We discuss in
Section 6 two related issues: one is the application of our idea to
another way of performing random walks, i.e., the “one-long-run”
scheme. The other is the limitation of our techniques. We present
the experimental results in Section 7, followed by a discussion of
related work in Section 8 and the final remarks in Section 9.

2. PRELIMINARIES

2.1 Graph Model
In this paper, we consider online social networks with the under-

lying topology of an undirected graphs G〈V,E〉, where V and E
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are the sets of vertices and edges, respectively. Note that for online
social networks which feature directed connections (e.g., Twitter),
a common practice in the literature (e.g., [16]) is to reduce it to an
undirected graph by defining two vertices v1, v2 ∈ V to be con-
nected in the undirected graph if and only if both v1 → v2 and
v2 → v1 exist as directed connections. We use |E| to denote the
number of edges in the graph. For a given node v ∈ V , let N(v)
be the set of neighbors of v, and d(v) = |N(v)| be its degree.

The web interface of the online social network exposes a re-
stricted access interface which only allows local neighborhood queries.
That is, the interface takes as input a node v ∈ V , and outputs
N(v), the set of v’s neighbors. The objective of sampling, as men-
tioned in the introduction, is to generate a sample of V (according
to a pre-determined sampling distribution) by issuing as few queries
through the restrictive access interface as possible.

2.2 Traditional Random Walks

2.2.1 Overview
A random walk is a Markov Chain Monte Carlo (MCMC) method

on the above-described graph G. Intuitively, all random walks
share a common scheme: it starts from a starting node v0 ∈ V .
At each step, given the current node it resides on, say vi for the i-
th step, the random walk randomly chooses its next step from vi’s
immediate neighbors and vi itself (i.e., self-loop might be allowed)
according to a pre-determined distribution, and then transits to the
chosen node (one can see that vi+1 ∈ {vi} ∪ N(vi)). We refer
to this distribution over N(vi) as the transit design. As discussed
below in examples of random walks, existing random walk designs
often choose either a fixed distribution (e.g., uniform distribution),
or a distribution determined by certain measurable attributes (e.g.,
degree) for nodes in N(vi). One can see that the transition design
can be captured by a |V | × |V | transition matrix T , in which Tij
is the probability for the random walk to transit to node vj if its
current state is vi.

Let pt(u) be the sampling probability for a node u ∈ V to be
taken at Step t of the random walk (i.e., pt(u) = Pr{u = vt}). A
special property of random walk, which makes it suitable for our
purpose of node sampling, is that as long as the graph G is irre-
ducible [10], pt(u) always converges to a fixed distribution when
t→∞, no matter what the starting node v0 is for the random walk.

2.2.2 Examples
There are many different types of random walks according to dif-

ferent designs of transition matrix T . We use Simple Random Walk
(SRW) and Metropolis-Hastings Random Walk (MHRW) because of
their popularity in the study of sampling online social networks.

DEFINITION 1. (Simple Random Walk (SRW)). Given graph
G〈V,E〉, and a current node u ∈ V , a random walk is called Sim-
ple Random Walk if it uniformly at random chooses a neighboring
node v from u’s neighbors as the next step. The transition matrix
T is

T (u, v) =

{
1/|N(u)| if v ∈ N(u),
0 otherwise. (1)

DEFINITION 2. (Metropolis-Hastings Random Walk (MHRW)).
Given graph G〈V,E〉, and a current node u ∈ V , a random walk
is called Metropolis-Hastings Random Walk if it chooses a neigh-
boring node v according to the following transition matrix T :

T (u, v) =


1

|N(u)| .min{1, |N(u)|
|N(v)| } if v ∈ N(u)

1−
∑
w∈N(u) T (u,w) if u = v

0 otherwise

(2)

We note that we set the target stationary distribution as uniform
distribution for MHRW.

2.2.3 Burn-In Period
With the traditional design of a random walk, its performance is

determined by how fast the random walk converges to its stationary
distribution, because only after so can the random walk algorithm
takes a node as a sample. To capture this performance measure,
burn-in period is defined as the number of steps it takes for a ran-
dom walk to converge to its stationary distribution, as shown in the
following definition.

DEFINITION 3. (Relative Point-wise Distance). Given graph
G〈V,E〉, and positive number of steps t, Relative Point-wise Dis-
tance is defined as the following distance between the stationary
distribution and the probability distribution for nodes to be taken
at Step t:

4(t) = max
u,v∈V,v∈N(u)

{
|T tuv − π(v)|

π(v)

}
(3)

where T tuv is the element of T t (transition matrix T to the power
of t) with indices u and v, and π is the stationary distribution of
the random walk [12]. The burn-in period of a random walk is the
minimum value of t such that4(t) ≤ ε where ε is a pre-determined
threshold on relative point-wise distance.

In practice, a popular technique for checking (on-the-fly) whether
a random walk has reached its stationary distribution is called the
convergence monitors (i.e. MCMC convergence diagnostics) [19].
For example, the Geweke method (summarized in [7]) considers
two “windows” of a random walk with length l: Window A is
formed by the first 10% steps, and Window B is formed by the
last 50%. According to [30], if the random walk indeed converges
to the stationary distribution after burn-in, then the two windows
should be statistically indistinguishable. Let

Z =

∣∣∣∣∣∣ θ̄A − θ̄B√
ŜAθ + ŜBθ

∣∣∣∣∣∣ , (4)

where θ is the attribute that can be retrieved from nodes (a typi-
cal one is the degree of a node), and θ̄A, θ̄B are means of θ for all
nodes in Windows A and B, respectively, and SAθ and SBθ are their
corresponding variances. One can see that Z → 0 when the ran-
dom walk converges to the stationary distribution. We use Geweke
method as the convergence monitor in the experiments, and we set
the threshold to be Z ≤ 0.1 by default, while also performing tests
with the threshold Z ≤ 0.01.

A property of the graph which has been proven to be strongly
correlated with the burn-in period length is the spectral gap of the
transition matrix T . We denote the spectral gap as λ = 1 − s2

where s2 is the second largest eigenvalue of T .

2.3 Acceptance-Rejection Sampling
Acceptance-rejection sampling (hereafter referred to as rejection

sampling) is a technique we use to “correct” a sampling distribution
to the desired target distribution. To understand how, consider the
case where our algorithm samples a node with probability p(u),
while the desired distribution assigns probability q(u) to node u.
In order to make the correction, we take as input a node u sampled
by our algorithm, and “accept” it as a real sample with probability

β(u) =
q(u)

p(u)
·min
v∈V

p(v)

q(v)
, (5)
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because after such correction, the probability distribution of node
u in the final sample is

p(u) · β(u)∑
u∈V (p(u) · β(u))

= q(u), (6)

which conforms to the desired target distribution.
A practical challenge one often faces when applying rejection

sampling is the difficulty of computing minv p(v)/q(v), especially
when the graph topology is not known beforehand. Even when a
theoretical lower bound on minv p(v)/q(v) can be computed, its
value is often too small to support the practical usage of rejection
sampling. A common practice to address this challenge is to re-
place minv p(v)/q(v) with a manual threshold (e.g., [8, 9]). Note
that a large threshold might introduce bias to the sample - e.g., a
threshold greater than minv p(v)/q(v) would make the computed
β(u) > 1 for certain nodes, essentially under-sampling them in the
final sample. Nonetheless, such a large threshold also improves the
efficiency of sampling, as the rejection probability will be lower. Of
course, such an approximation can be made more conservatively
(i.e., lower) to reduce bias, or more aggressively (i.e., higher) to
make the sampling process more efficient.

2.4 Performance Measures
There are two important performance measures for a sampling

algorithm over an online social network. One is its query cost - i.e.,
the number of nodes it has to access in order to obtain a predeter-
mined number of samples. Note that query cost is the key efficiency
measures here because many website enforce a query rate limit on
the number of nodes one can access from an IP address or API ac-
count for a given time period (e.g., a day). As such, a random walk
based sampling algorithm has to minimize the number of steps it
takes to generate samples.

The other key performance measures here is the sample bias -
i.e., the distance between the actual sampling distribution (i.e., the
probability distribution according to which each node is drawn as
a sample) and a predetermined target distribution. Note that while
the uniform distribution is often used as the target distribution to
ensure equal chance for all nodes, the target distribution can also
have other values - e.g., proportional to the node degree (when sim-
ple random walk is used).

Another important issue with the definition of sample bias is the
distance measure being used. Traditionally (e.g., in the studies of
burn-in period and convergence monitoring for bounding the sam-
pling bias), a popular measure is the vector norm for the difference
between the two probability distribution vectors. For example, the
variation distance measure the `∞-norm of the difference vector
- i.e., the maximum absolute difference for the sampling probabil-
ity of a node. While this is a reasonable measure for theoretical
analysis, it can be difficult to use for experimental evaluations, as
obtain the actual sampling probability for every node requires run-
ning the sampling algorithm repeatedly for extremely large number
of times, especially when the underlying graph is large. To address
the problem, in this paper, we use the vector norm measure for the-
oretical analysis, while using a different measure for experiments
for the large graphs: specifically, we measure the error while us-
ing the obtained sample to estimate AVG aggregates such as the
average degree of all nodes in the graph. We shall further elabo-
rate the design of this experimental measure and the various AVG
aggregates we use in the experimental evaluation section.

3. OVERVIEW OF WALK-ESTIMATE
In this section, we provide an overview of WALK-ESTIMATE,

our main contribution of the paper. Specifically, we first describe

the input and output of the algorithm, followed by a brief descrip-
tion of our key ideas and an outline of the main technical challenges
for WALK and ESTIMATE, respectively.
Input & Output: The design objective of WALK-ESTIMATE is
to achieve universal speed-up for MCMC sampling (random walks)
over online social networks regardless of their target sampling dis-
tribution (and correspondingly, transition design). To achieve this
goal, WALK-ESTIMATE takes as input (1) the transition design
of an MCMC sampling algorithm, and (2) the desired sample size
h. The output consists of h samples taken according to the exact
same target distribution as the input MCMC algorithm (subject to
minimal sampling bias, as we shall further elaborate in latter sec-
tions). As discussed in Section 2, during this sampling process,
WALK-ESTIMATE aims to minimize the query cost.
Key Ideas: Recall from the introduction that our main novelty here
is to forgo the long “wait” (i.e., burn-in period) required by tradi-
tional random walks, and instead WALK an optimal (much smaller)
number of steps (often only a few steps longer than the graph diam-
eter - see below for details). Of course, having a drastically shorter
walk also makes our sampling distribution different from the tar-
get one we have to achieve at the end. To address this problem, our
WALK calls upon the ESTIMATE component to estimate the prob-
ability for a node to be sampled by a (now much shorter) walk. Not
that such estimated probability allows us to perform acceptance-
rejection sampling [21] over the nodes sampled in WALK, which
eventually leads to samples taken according to the target distribu-
tion.
Technical Challenges for WALK: One can see from the above
description that the design of the two components face different
challenges: For “WALK”, the main challenge is how to properly
determine the number of steps to walk. Clearly, the walk length
must be at least the diameter of the graph in order to ensure a pos-
itive sampling probability for each node. On the other hand, an
overly long walk not only diminishes the saving of queries, but
might indeed cost even more queries than traditional random walks
when the cost of ESTIMATE is taken into account. We shall ad-
dress this challenge in Section 4 - and as we shall further elaborate
there, fortunately, for real-world social networks, there is usually a
wide range of walk lengths with which the WALK step can have a
significant saving of query cost even after rejection sampling.
Technical Challenges for ESTIMATE: For ESTIMATE, the key
challenge is how to enable an accurate estimation for the sampling
probability of a node without incurring a large query cost. Note
that, after we repeatedly run WALK to generate (say 100) samples,
there may be nodes sampled multiple times by WALK for which
we can directly estimate their sampling probability (as their rel-
ative frequency within the collected sample). Nonetheless, for the
vast majority of nodes which are sampled only once (almost always
the case when the graph being sampled is large), it is unclear how
one can estimate their sampling probabilities. We shall address this
challenge in Section 5 and show that (1) there is a surprisingly sim-
ple algorithm which enables a completely unbiased estimation of
the sampling probability and consumes only a few extra queries,
and (2) there are two effective heuristics which reduce the estima-
tion variance even further, leading to more accurate estimations.

In the next two sections, we shall develop or techniques for the
two components, WALK and ESTIMATE, respectively. The com-
bination of them forms Algorithm WALK-ESTIMATE which, as
we demonstrate in the extensive experimental results in Section 7,
produces higher quality (i.e., lower bias) samples than the tradi-
tional random walk algorithms while consuming fewer queries.
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4. WALK
We start with developing Algorithm WALK which significantly

improves the efficiency of sampling by having a much shorter ran-
dom walk followed by a rejection sampling process. Note that, for
the ease of discussions, we separate out the discussion of sampling-
probability estimation to the ESTIMATE component discussed in
the next section - i.e., Algorithm WALK calls upon Algorithm ES-
TIMATE as a subroutine.

In this section, we first illustrate the key rationale behind our de-
sign with an ideal-case algorithm, IDEAL-WALK, and then present
theoretical analysis which shows that a shorter walk followed by an
acceptance-rejection procedure can almost always outperform the
traditional random walk, no matter what the starting point is or the
graph topology looks like. To study how much improvement a short
walk can offer, we describe case studies with the underlying graph
generated from various theoretical graph models. Finally, we con-
clude this section with the practical design of Algorithm WALK.

4.1 IDEAL-WALK: Main Idea and Analysis
The key rationale behind our idea of performing a short walk fol-

lowed by acceptance-rejection sampling can be stated as follows.
Recall from Section 2 that the long walk is required by traditional
random walks to reduce the “distance” between its sampling dis-
tribution and the target, stationary, distribution - a distance often
measured by the difference (e.g., `∞-norm) between the two prob-
ability vectors.

Consider how such a difference changes as the walk becomes
longer. When the walk first starts, the sampling distribution is ex-
tremely skewed - i.e., p1(v) = 1 on one node (the starting one)
and 0 on all others - leading to an extremely large distance. As
the walk proceeds, the distance decreases quickly - for example, as
long as the walk length exceeds the graph diameter, all values in the
sampling probability vector become positive1, while the maximum
value in the vector tends to decrease exponentially with the (initial
few) steps taken - leading to a sharp decrease of the distance.

Nonetheless, it is important to note that the speed of reduction
on the distance becomes much slower as the random walk grows
longer. A simple evidence is the asymptotic nature of burn-in as
discussed in Section 2 - which shows that, for some graphs, the ul-
timate reduction to zero distance never completes with a finite num-
ber of steps. Figure 1 demonstrates a concrete example for a ran-
dom scale free network with 31 nodes generated by the Barabasi-
Albert model [4], where number of edges to attach from a new node
to existing nodes is 3. One can see from the figure that the speed
of reduction declines sharply once the random walk grows longer
than the graph diameter. In summary, one can observe the follow-
ing “behavior pattern” of traditional random walks: to achieve a
preset goal of shrinking the distance measure below a threshold,
the random walk makes significant progress in the first few steps.
Nonetheless, the “benefit-cost ratio” diminishes quickly as the ran-
dom walk continues. As a result, a random walk might require a
very long burn-in period to achieve the preset distance threshold.

Standing in sharp contrast to the above described behavior pat-
tern is the performance of using acceptance-rejection sampling to
achieve the pre-determined target distribution (instead of waiting
for convergence). Interestingly, applying rejection sampling at the
beginning of a random walk is often extremely costly - or even out-
right infeasible. For example, no rejection sampling can correct to a
uniform target distribution before the walk is at least as long as the
graph diameter. On the other hand, as the walk becomes longer, the
1Note that here we assume each node has a nonzero (can be arbi-
trarily small) probability to transit to itself, to eliminate trivial cases
where the graph is not irreducible.
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cost of applying rejection sampling to reach the target distribution
becomes much smaller - as we shall demonstrate as follows.

Consider an example where the target distribution is uniform.
Note from acceptance-rejection sampling in Section 2.3 that, in this
case, the cost of rejection sampling is simply determined by (to be
exact, inversely proportional to) the minimum value in the input
sampling distribution - as the probability of accepting a sample is
exactly the minimum probability multiplied by the number of nodes
in the graph. As discussed above, this minimum probability grows
from 0 at the very beginning to a positive value when the walk
reaches the diameter, and often increases rapidly at the initial stage
of random walk (see again Figure 1). Correspondingly, the cost of
rejection sampling drops significantly with a longer random walk.

One can observe from the above discussion an interesting dis-
tinction between two (competing) methods, (a) wait for the sam-
pling distribution to converge to the stationary one, and (b) taking
the current sampling distribution and directly “correct” it through
rejection sampling: These two methods are better applied at dif-
ferent stages of a random walk process. Specifically, at the very
beginning, method (b) is extremely costly or outright infeasible -
so we should follow method (a) and walk longer for the sampling
distribution to grow closer to the target vector. Nonetheless, after
a certain number of steps, the direct correction (i.e., method (b))
becomes the better option because of the slower and slower con-
vergence speed. Therefore, we should stop waiting for further con-
vergence, and instead use rejection sampling to directly reach the
desired distribution.

Of course, the above discussions leaves an important question
unanswered: Given a reasonable threshold on the distance (be-
tween achieved sampling distribution and the desired stationary
one), is there always a tipping point where we switch for wait-
ing to correction? Note that the reason why the threshold value
is important here can be observed from the extreme cases: when
the threshold is extremely large, there is no need to switch because
even the initial (one 1 and all other 0) distribution already satisfies
the threshold. On the other hand, when the threshold trends to 0,
as we discussed above, there are graphs for which the convergence
length tends to infinity - i.e., it is always better to switch to rejec-
tion sampling as long as it has a finite cost. One can see from the
extreme cases that whether switching to rejection sampling is effec-
tive in practice depends on whether the switch is necessary for rea-
sonable thresholds that are just small enough to support real-world
applications over the samples taken from online social networks.
To this end, we have the following theorem.

THEOREM 1. Given an input random walk which has a tran-
sition design with spectral gap λ, to guarantee an `∞-variation
distance of ∆ between the sampling and target distributions, the ex-
pected query cost per sample of IDEAL-WALK which performs the
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random walk for topt steps followed by rejection sampling, where

topt =
− log(− 1

Γ
·W (− Γ

edmax
) · dmax)

log(1− λ)
, (7)

where dmax is the maximum degree of all nodes in the graph and
W is the Lambert W -function, is always smaller than that of the
the input random walk as long as 0 < ∆ < Γ. Specifically, the
ratio between the query cost per sample of IDEAL-WALK and the
input random walk is at most

Γ · topt − topt ·∆
Γ− (1− λ)topt · dmax

≤
− log(− 1

Γ
·W (− Γ

edmax
) · dmax)

log(∆/dmax)
· Γ−∆

Γ + Γ

W (− Γ
edmax

)

. (8)

PROOF. The proof has been provided in technical report [25].

This Theorem shows that how the performance of IDEAL-WALK
changes when the walk length grows larger. Initially, a larger num-
ber of steps leads to a smaller cost, i.e., the expected query cost per
sample for IDEAL-WALK, until number of steps reaches the opti-
mal value topt. Afterwards, a larger number of steps will lead to
a larger cost, until cost of the IDEAL-WALK becomes equivalent
with the cost of input random walk. To understand the concrete
values of optimal number of steps, topt, and the ratio between the
query cost per sample of IDEAL-WALK and the input random walk
in theorem, we consider a number of case studies in the following
subsection.

4.2 Case Study
In this subsection, we compute numerically the values of topt

and c/cRW over a number of theoretical graph models, specifically
Cycle, Hypercube, Barbell, Tree, and Barbasi-Albert (scale free)
models: A cycle graph consists of a single circle of n nodes - i.e.,
the graph has a diameter of bn

2
c. A k-hypercube consists of 2k

nodes and 2k−1k edges. If we represent each node as a (unique)
k-bit binary sequence, and two nodes are connected if and only if
their representations differ in exactly one bit. One can see that the
hypercube has a diameter of k. A barbell graph of n nodes is a
graph obtained by connecting two copies of a complete graph of
size n−1

2
by a central node, i.e, the diameter is 3. A tree of height h

is a cycle free graph with at most 2h+1 − 1 nodes and diameter of
2h. We considered a balanced binary tree, where the leaves are h
hops away from the root. Finally, to simulate a scale-free network
(with node degrees following a power-law distribution), we use the
Barabasi-Albert model [4], where number of edges to attach from
a new node to existing nodes is 3.

Figure 2 depicts how the expected query cost per sample changes
when the length of walk taken by IDEAL-WALK varies from 1 to
128. We considered graphs with fix number of nodes 31. Since hy-
percube should have 2k nodes, we generate the one with 32 nodes.
In all cases, the target distribution is the uniform distribution. Note
that if the walk length is smaller than the corresponding graph di-
ameter, then we cost c to be infinity. One can see from the figure
that, for all graph models, the trend we observe from Theorem 1
holds - i.e., the query cost per sample c drops dramatically at the
beginning, reaches a minimal value, and then increases slowly. An-
other observation from the figure is that, in general, the larger di-
ameter a graph has, the greater the optimal walk length for IDEAL-
WALK will be. For example, compared with a Barbell graph with
diameter of 3, the cycle graph with diameter of b 31

2
c = 15 has

a much longer optimal walk length - and consequently requires a
larger query cost per sample.

Next, we examine the degree of improvement offered by IDEAL-
WALK over the input random walk, again over the various graph
models described above. Figure 3 depicts how the ratio of improve-
ment - i.e., 1− c/cRW - changes when the graph size varies from 4
to 128. There are two interesting observations from the figure: One
is that, while IDEAL-WALK offers over 50% savings in almost all
cases, the amount of savings does depend on the underlying graph
topology - e.g., the improvement ratio is far smaller on cycle graphs
than others, mainly caused by its large diameter and small spectral
gap of O(n−2) [19].

The other observation is on how the improvement ratio changes
with graph size: Interesting, when the graph becomes larger, the
ratio increases for some models (e.g., Barbell), remains virtually
constant for some others (e.g., hypercube, Barabasi-Albert), and
declines for the ones left (e.g., cycle). An intuitive explanation
here is that how the improvement ratio changes, as predicted in
Theorem 1, depends on a joint function of the graph size (e.g., |E|)
and the spectral gap (i.e., λ). Since the spectral gap is difficult
to directly observe, and there is a common understanding that the
spectral gap is negatively correlated with the graph diameter [28],
we illustrate the issue here by considering how the graph diameter
changes with a linearly increasing node count for the various graph
models: For the cycle graph, the diameter increases as fast as the
node count - leading to a (generally) decreasing improvement ra-
tio. For hypercube, tree and Barabasi-Albert models, the diameter
increases at the log scale2 of node count - correspondingly, the im-
provement ratio is almost unaffected by the graph size. For Barbell
graph, on the other hand, the diameter remains unchanged (i.e., 3)
no matter how large the graph is. As a result, we observe a rapidly
increasing improvement ratio from Figure 3. Note that this is in-
deed a promising sign for the performance of IDEAL-WALK over
real-world social networks, because it is widely believed that the di-
ameter of such a network remains virtually constant (e.g., [23] [14])
no matter how large the graph size is - in other words, the improve-
ment ratio offered by IDEAL-WALK is likely to increase as the
graph becomes larger - a phenomenon we shall verify in the exper-
iments section over the synthetic social networks by changing the
size of the graph.

4.3 Algorithm WALK
While the above theoretical analysis demonstrates the significant

potential of query-cost savings by our WALK-ESTIMATE scheme,
there is one key issue remaining before one can instantiate our idea
into a practical WALK algorithm: in practice when the graph topol-
ogy is not known beforehand, how can we determine the number of
steps to walk before calling the ESTIMATE algorithm and perform-
ing the rejection sampling process? As one can see from the above
discussions, an overly small length would lead to most samples be-
ing rejected, while an overly large one would incur unnecessary
query cost for the WALK step.

Fortunately, we found through studies over real-world data (more
details in the experimental evaluation section) that the setting of
walk length is usually easy in practice as long as we set the walk
length conservatively rather than aggressively. To understand why,
note from the above case study, specifically the change of query
cost per sample with walk length, that the query cost drops sharply
before reaching the optimal walk length, the increase afterwards
is much slower. As such, a reasonable strategy for setting the walk
length is to be conservative rather than aggressive - i.e., giving pref-
erence to a longer, more conservative walk length. As we shall
further elaborate in the experiments section, we use a default walk
2To be exact, the diameter for Barabasi-Albert model is propor-
tional to logn/ log log n [6] [5]
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Figure 2: Query cost per sample achieved by IDEAL-AR-SAMPLER.
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Figure 3: Query cost saving of the IDEAL-AR-SAMPLER.

length of two times the graph diameter, which is conservatively es-
timated to be 10 for real world online social networks.

It is important to note that, while our experiments demonstrate
that the above described heuristic strategy for setting the walk length
works well over real world social networks, it is not a theoretically
proven technique that works for all graphs. A simple counterexam-
ple here is the above-discussed Barbell graph - i.e., two complete
graphs connected by one node, with one edge connected to each
half. One can see that, while the graph has a very short diameter
(i.e., 3), a random walk of length 6 is highly unlikely to cross to the
other half of the graph, unless it starts from one of the three nodes
that connect the two halves together. As such, the above heuristics
for setting the walk length would yield an extremely small sample-
acceptance probability and, therefore, a high query cost.

5. ESTIMATE
Algorithm WALK leaves as an open problem of the estimation

of sampling probability for a given node, so as rejection sampling
can be applied to reach the input target distribution. In this section,
we address this problem with Algorithm ESTIMATE. Specifically,
we shall first describe a simple algorithm which, somewhat surpris-
ingly, provides a completely unbiased estimation for the sampling
probability with just a few queries. Unfortunately, we also point
out a problem of this simple method: its high estimation variance
which, despite the unbiasedness, still leads to a large error. To ad-
dress this problem, we develop two heuristics, initial crawling and
weighted sampling, to significantly reduce the estimation variance
while requiring only a small number of additional queries.

5.1 UNBIASED-ESTIMATE
Unbiased Estimation of Sampling Probability: Recall that we
use pt(u) to denote the probability for a node u to be visited at
Step t of a random walk conducted by WALK, and N(u) is the
set of neighbors of u. To illustrate the key idea of UNBIASED-
ESTIMATE, we start by considering the case where the input ran-
dom walk is the simple random walk. One can see that

pt(u) =
∑

u′∈N(u)

pt−1(u′)

|N(u′)| . (9)

Thus, given u, a straightforward method of estimating pt(u) is to
select uniformly at random a neighbor of u (i.e., u′ ∈ N(u)), so as
to reduce the problem of estimating pt(u) to estimating pt−1(u′),

because an unbiased estimation of pt(u) is simply

p̃t(u) =
|N(u)|
|N(u′)| · pt−1(u′). (10)

An important property of such an estimation is that as long as
we can obtain an unbiased estimation of pt−1(u′), say p̃t−1(u′),
then the estimation for pt(u) will also be unbiased. The reason
for the unbiasedness can be stated as follows: Note that due to the
conditional independence of the estimation of p̃t−1(u′) with the
selection of u′ from N(u), we have

E(p̃t(u)) =
∑

u′∈N(u)

1

|N(u)| ·
|N(u)|
|N(u′)| · E(p̃t−1(u′)) (11)

=
∑

u′∈N(u)

1

|N(u′)| · E(p̃t−1(u′)) (12)

=
∑

u′∈N(u)

1

|N(u′)| · pt−1(u′) = pt(u), (13)

where E(·) represents the expected value taken over the random-
ness of the estimation process.

Given the unbiasedness property, we can run a recursive process
for estimating pt(u) (with a decreasing subscript t) until reaching
p0(w). Now we have p0(w) = 1 ifw is the starting node of the ran-
dom walk and 0 otherwise. One can see that this recursive process
leads to an unbiased estimation of pt(u). We refer to this estima-
tion method as UNBIASED-ESTIMATOR. The generic design of
UNBIASED-ESTIMATOR (for any input MCMC random walk) is
depicted in Algorithm 1, where puu′ is the transition probability
from node u′ to u and qu′u is the transition probability from node
u to u′ in the backward process.

Algorithm 1 UNBIASED-ESTIMATE
1: Input: Node u, Starting node w, Length of walk t
2: If t = 0 and u == w then return 1
3: If t = 0 and u != w then return 0
4: return puu′

qu′u
· UNBIASED-ESTIMATE(u′, w, t− 1)

Analysis of Estimation Variance: While the above UNBIASED-
ESTIMATOR produces an unbiased estimations of the sampling
probability, it also has an important problem: a high estimation
variance which leads to a high estimation error (unless the estima-
tor is repeatedly executed to reduce variance - which would lead to
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a large query cost nonetheless). Specifically, the estimation vari-
ance on the last few steps of the recursive process (i.e., with the
smallest subscript in pt(u)) are amplified significantly in the final
estimation. To see this, consider a simple example of a k-regular
graph. With UNBIASED-ESTIMATOR, the estimation of pt(u) is
either p̃t(u) = 1 (when the node w encountered at p0(w) is the
staring node) or 0 otherwise. As a result, the relative standard error
for the estimation of pt(u) is exactly

√
(1− pt(u))/pt(u). Since

pt(u) is usually extremely small for a large graph, the relative stan-
dard error can be very high for UNBIASED-ESTIMATOR.

Our main idea for reducing the estimation variance is two-fold:
initial crawling and weighted sampling - which we discuss in the
next two subsections, respectively, before combing UNBIASED-
ESTIMATE and the two heuristics to produce the practical ESTI-
MATE algorithm.

5.2 Variance Reduction: Initial Crawling
Our first idea is to crawl the h-hop neighborhood of the start-

ing point, so for each node v in the neighborhood, we can pre-
cisely compute its sampling probability pt(v) for t ≤ h. For ex-
ample, if simple random walk is used in WALK, then all nodes
v in the immediate 1-hop neighborhood of starting node s have
p1(v) = 1

|N(s)| . In practice, h should be set to a small number
like 2 or 3 to minimize the query cost caused by the crawling pro-
cess - note that the query cost is likely small because many nodes
in the neighborhood may already be accessed by the WALK part,
especially when multiple walks are performed to obtain multiple
samples.

One can see that, with this initial crawling step, we effectively
reduce the number of backward steps required by ESTIMATE be-
cause the backward estimation process can terminate as soon as it
hits a crawled node. This shortened process, in turn, leads to a
lower estimation variance and error.

5.3 Variance Reduction: Weighted Sampling
Our second idea for variance reduction is weighted sampling -

i.e., instead of picking u′ uniformly at random fromN(u) as stated
above (for estimating pt(u) from pt−1(u′)), we design the proba-
bility distribution based on the knowledge we already have about
the underlying graph (e.g., through the random walks and back-
ward estimations already performed). The key motivation behind
this idea is the following observation on UNBIASED-ESTIMATE:
When estimating pt(u), the values of pt−1(u′) for all neighbors
of u (i.e., u′ ∈ N(u)) tend to vary widely - i.e., some neighbors
might have much higher sampling probability than others. This
phenomenon is evident from the fact that, even after reaching the
stationary distribution of say the simple random walk, the sampling
probability can vary by dmax/dmin times, where dmax and dmin are
the maximum and minimum degree of a node, respectively. On the
other hand, without the initial crawling process, when t = 1, all
but one neighbors of u have p0(u′) = 0, while the other one has
p0(u′) = 1 - also a significant variation.

Given this observation, one can see that we should allocate the
queries we spend according to the value of pt−1(u′) rather than
simply at a uniform basis - specifically, we should spend more
queries estimating a larger pt−1(u′), simply because its estima-
tion accuracy bears more weight on the final estimation error of
pt(u). To this end, we adjust the random selection process of u′

from N(u) to the following weighted sampling process: First, we
assign a minimum sampling probability ε to all nodes in N(u) -
to maintain the unbiasedness of the estimation algorithm. For the
remaining 1 − ε probability, we assign them proportionally to the
total number of historic random walks which hit node u′ at Step

t− 1. More specifically, during the estimation process, all our ran-
dom walks start from the same starting node. Suppose we have per-
formed nhw random walks and currently performing the next one.
Also suppose that we are at node u at step t. Let u′ be a neighbor of
u (i.e u′ ∈ N(u)). Among the nhw random walks, we compute the
number of times u′ is reached at step t − 1. Let it be nu′,t−1. i.e.
0 ≤ nu′,t−1 ≤ nhw. The ratio

nu′,t−1

nhw
has some impact on how

often node u′ is picked as part of the random walk. Algorithm 2
depicts the pseudocode of this weighted sampling scheme.

Algorithm 2 WeightedSamplingBackward (WS-BW)
1: Input: Node u, starting node w, Length of walk t, ε
2: if t = 0 and u = w then return 1
3: if t = 0 and u 6= w then return 0
4: ∀u′ ∈ N(u), πu′ = ε/|N(u)|
5: ∀u′ ∈ N(u), πu′ = πu′ + (1− ε)(nu′,t−1/nhw)
6: Choose node v from N(u) according to distribution π
7: return 1

|N(v)|·πv
·WS-BW(v, w, t− 1)

5.4 Algorithm ESTIMATE
We now combine UNBIASED-ESTIMATE with our two heuris-

tics for variance reduction, initial crawling and weighted sampling,
to produce Algorithm ESTIMATE. Note that there is one additional
design in ESTIMATE which aims to further reduce the estimation
error: For each pt(u) we need to estimate, we can repeatedly exe-
cute ESTIMATE (and take the average of estimations) to reduce the
estimation error. The number of executions we take, of course, de-
pends on the overall query budget. In addition, instead of running
the same number of executions for all u, we next allocate the bud-
get, once again, according to the estimations we have obtained so
far for all nodes to be estimated. Specifically, we assign the num-
ber of executions in proportion to the estimation variance for each
node. Figure 3 depicts the pseudo code of Algorithm ESTIMATE.

Algorithm 3 ESTIMATE
1: Input: Starting node w, length of walk t, number of crawling

steps h, forward random walks issued F
2: Crawl h-hop neighborhood of w and compute their exact sam-

pling probability
3: Let VF be the set of nodes hit by random walks in F
4: for u ∈ VF do
5: pt(u) = WS-BW(u,w, t)
6: Compute estimation variance of estimations of pt(u)
7: end for
8: Use remaining budget to reduce variance by invoking Algo-

rithm 2. Choose nodes randomly proportional to their variance.

6. LIMITATIONS OF WALK-ESTIMATE -
GRAPH DIAMETER

Before concluding the technical discussion of WALK-ESTIMATE,
we would like to point out its limitations - i.e., when it should not
be applied for sampling a graph with local neighborhood access
limitations. Specifically, we note that WALK-ESTIMATE should
not be applied over graphs with long diameters. Note that while
our results for IDEAL-WALK (Theorem 1) appear to demonstrate
efficiency enhancements regardless of the graph diameter, the per-
formance of our ESTIMATE step is significantly worse when the
graph diameter is large. The reason behind this is straightforward
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Figure 4: Cycle graphs with long diameter

- in our backward walk for ESTIMATE, the probability of hitting
the starting node (or the starting neighborhood crawled by the ini-
tial crawling process) decreases rapidly when the graph diameter
becomes larger. This in turn leads to more backward walks be-
ing required for the estimations of sampling probability and, as a
result, worst sampling efficiency. Figure 4 demonstrates an exam-
ple of how the average number of walk steps taken (for WALK-
ESTIMATE, both forward and backward) per sample changes on
cycle graphs for simple random walk (SRW) and our WALK-ESTIMATE
algorithm (WE, with SRW as input) when the graph diameter grows
from 5 to 25. The cycle graphs’ sizes are 11, 21, . . . , 51. One can
see that unlike SRW which is barely affected by the growing diame-
ter, the expected cost of WALK-ESTIMATE increases dramatically
as the diameter becomes longer. It is important to understand that
graphs with long diameters are not the intended target of this paper,
because it is well known that online social networks, even the very
large ones, have small diameters ranging from 3 to 8 [20].

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setup
Hardware and Platform: All our experiments were performed on
a quad-core 2 GHz AMD Phenom machine running Ubuntu 14.04
with 8 GB of RAM. The algorithms were implemented in Python.
Datasets: In this section, we test real-world data crawled from
online social networks and also those which are publicly avail-
able. Specifically, we use three different popular social graphs, i.e.
Google Plus, Yelp, and Twitter. The detail of each dataset is de-
scribed bellow. Moreover, we use small synthetic data to find the
exact bias of the obtained samples.

Google Plus Social Graph: Google Plus3 is the second largest
social networking site with more than 500 million active users. For
our experiments, we crawled a subset of the graph by starting from
a number of popular users and recursively collecting information
about their followers. We model this dataset as an undirected graph
where the users correspond to nodes and an edge exist between
two users if at least one of them has the other in their circles. We
collected 16,405 users with more than 4.5 million connections be-
tween them. The average degree of the graph is 560.44. We also
collected each user’s self description and used it in our tests.

Yelp Social Graph: Yelp is a crowd-sourced local business re-
view and social networking site with 132 million monthly visitors
and 57 million reviews. Yelp Academic dataset4 provides all the
data and reviews of the 250 local businesses. For our experiments,
we considered the largest connected component of user-user graph
where nodes are the users and an edge exists between two users
if they review atleast one similar business. Moreover, for each

3http://plus.google.com
4www.yelp.com/academic_dataset

user there exists different information such as, review text, star rat-
ing, count of useful votes, count of funny votes, and count of cool
votes. This graph has approximately 120,000 nodes and more than
954,000 edges.

Twitter Social Graph: Twitter is an online social network which
is popular among millions of users who generate huge numbers of
tweets, posts, and reviews every day. We used the Twitter dataset
from Stanford’s SNAP dataset repository5 which is a directed graph
crawled from public sources and has close to 80,000 nodes and
more than 1.7 million edges. In our experiments, we assume it is
an undirected graph and we consider in and out degrees of a node
as its attributes.

Synthetic Graph: We generated scale-free network of size 1000
nodes and 6951 edges using the Barabasi-Albert model [4], with
the number of edges to attach from a new node (to existing nodes)
set by default to 7.
Algorithms Evaluated: We evaluated two traditional random walks
- simple random walk (SRW) and Metropolis Hastings random
walk (MHRW) - and the application of our WALK-ESTIMATE
(WE) algorithm over each of them. Additionally, in order to eval-
uate the effect of the variance reduction heuristics, initial crawl-
ing and weighted sampling, proposed in Section5, we compared
the performance of our main algorithm (WE) with three variations
WE-None, WE-Crawl, and WE-Weighted. WE-None uses nei-
ther heuristics, WE-Crawl uses initial crawling only, while WE-
Weighted uses weighted sampling only.
Parameter Settings: For SRW and MHRW, we used the Geweke
convergence monitor [7] with threshold Z ≤ 0.1. For our WALK
component, we set the walk length to 2d + 1 where d is the (esti-
mated) graph diameter (set to d = 7 for Google Plus). For initial
crawling, we set h = 1 for Google Plus and h = 2 for the syn-
thetic graphs, Yelp, and Twitter. For weighted sampling, we set
ε = 0.1. We also considered 10th percentile of the estimation of
sampling probabilities as the scale factor, minv∈V (p(v)/q(v)), for
the acceptance rejection. In each graph, we run all the algorithms
from the same starting point. For each obtained data point in the
results we reported average value of the 100 runs. In WE, we varies
number of walks from 100 to 2000 in every run.
Performance Measures: Given the large sizes of the graph be-
ing tested, it is impractical to precisely measure the bias of ob-
tained samples. Thus, for the large graphs we indirectly measured
the sample bias by the relative error of AVG aggregate estimations
generated from the samples (i.e., |x̃ − x|/x where x and x̃ are
the precise and estimated values of the aggregate, respectively).
We used arithmetic and harmonic mean for the uniform and non-
uniform samples respectively. Node and edge sampling has been
used to measure variety of network metrics [11, 26, 27]. Among
them we focus on the measures which can be computed from node
sample. Specifically, we evaluate AVG aggregate of the measures
related to the topological properties (such as degree, shortest path
length, local clustering coefficient) as well as measures associated
with a node attribute (such as number of stars in Yelp, and user’s
self-description in Google Plus). Specifically, for Google Plus, we
considered two aggregates: the AVG degree and the AVG num-
ber of words in a user’s self-description. For Yelp and Twitter we
considered topological properties, i.e., degree, shortest path length,
local clustering coefficient. In Twitter we estimate number of fol-
lowers and followees using the in and out degrees of the node as its
attributes. We also estimate average number of stars in Yelp.

Moreover, we computed exact bias of our algorithms over a small
graph. Recall that sample bias is defined as the distance between

5snap.stanford.edu/data/egonets-Twitter.html
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(a) Average Degree (SRW)
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(b) Average Self-description Length
(SRW)
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(c) Average Degree (MHRW)
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(d) Average Self-description Length
(MHRW)

Figure 5: Relative Error of the Average Estimations vs Query Cost in Google Plus.
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(a) Yelp: Average Degree
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(b) Yelp: Average Stars
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(c) Yelp: Average Shortest Path
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(d) Yelp: Average Local Clustering
Coefficient

Figure 6: Relative Error of the Average Estimations vs Query Cost in Yelp.

actual sampling distribution (i.e., the probability distribution ac-
cording to which each node is drawn as a sample) and a predeter-
mined target distribution. We used two distance measures variation
distance (`∞), and K-L divergence to quantify the bias.

7.2 Experimental Results
Aggregate estimation: We started by testing how WE performs
against the baseline SRW and MHRW on the fundamental tradeoff
in social network sampling - i.e., sample bias vs. query cost. The
results over Google Plus are shown in Figure 6. Specifically, sub-
graphs (a) and (b) depict SRW and WE with SRW as input random
walk, while (c) and (d) are corresponding to MHRW. The AVG ag-
gregate used to measure sample bias is AVG degree for (a) and (c)
and AVG self-description length for (b) and (d). As one can see
from the figure, our algorithm significantly outperforms SRW and
MHRW - i.e., offers substantially smaller relative error for the same
query cost - on both aggregates tested. Figure 6 shows the results
over the Yelp dataset. Specifically, subgraph (a) shows the AVG ag-
gregate of the node attributes, i.e. star rating while subgraphs (b),
(c), and (d) is the results of AVG aggregate of the topological prop-
erties, i.e, degree, shortest path length, and clustering coefficient.
The results confirm the fact that WE provides smaller relative er-
ror with the same query cost. We also test our algorithm in Twitter
dataset and the results in Figure 7 shows that AVG of the in-degree,
out-degree, shortest path length, and clustering coefficient of the
samples retrieved by the WE has smaller relative error than SRW
for the same query cost.

We also study how our proposed variance reduction techniques
improves the efficiency of our algorithm by comparing the perfor-
mance of WE, WE-None, WE-Crawl and WE-Weighted, again ac-
cording to how the relative error of aggregate estimation changes
with the query cost. Figure 8 depicts the result for Google Plus,
according to the same subgraph setup (i.e., random-walk/aggregate
combination) as Figure 6. One can see that, as expected in all cases,

WE outperforms the single-heuristics variants, which in turn out-
perform the theoretical variant of the algorithm.

Finally, we tested the quality of samples obtained by WE, in or-
der to verify that the above-tested performance enhancements are
not merely from walks being shorter, but from an equal or higher
quality sample as well. To this end, Figure 8 depicts how the rela-
tive errors on AVG estimations change with the number of samples
produced by SRW, MHRW, and the corresponding WEs, respec-
tively on Google Plus - again according to the same subgraph setup
as Figure 6. One can see that in all cases, the samples produced
by WE achieves smaller relative error than the corresponding input
random walks (with Geweke convergence monitor), indicating the
smaller sample bias achieved by WE. The results for the Yelp and
Twitter are similar to those of Google Plus and, due to space lim-
itations, are not included in the paper. More experimental results
can be found in the technical report [25].
Exact bias: We used a synthetic graph to find the exact bias of
the obtained samples. We compared three different sampling dis-
tributions: (1) theoretical target distribution denoted as theo (2)
WE sampling distribution and (3) SRW sampling distribution. We
run the sampling algorithm with a large query budget 1,000,000
for both WE and SRW, we got 36600 samples from WE and 1101
samples from SRW. The Probability density function (PDF) is then
estimated based on these samples, see Figure 10. One can see that
WE produces more accurate PDF than SRW (i.e. closer to the theo-
retical PDF curve). Table 1 provides the result of variation distance
(`∞) and K-L divergence to quantify the bias of the samples. The
results show that the sampling distribution of WE is much closer
than that of SRW to the theoretical target distribution.

8. RELATED WORK
Random Walks: As discussed in Section 2, random walk is an
MCMC based sampling method extensively studied in statistics
(e.g, [10]). Besides the traditional random walk designs described
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(a) Twitter: Average In-Degree
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(b) Twitter: Average Out-Degree

0.06 0.07 0.08 0.09 0.1 0.11
0

1

2

3

4

5

6

7

8
x 10

4

Relative Error

Q
ue

ry
 C

os
t

 

 

SRW
WE

(c) Twitter: Average Local Cluster-
ing Coefficient
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(d) Twitter: Average Local Cluster-
ing Coefficient

Figure 7: Relative Error of the Average Estimations vs Query Cost in Twitter (from SNAP repository).
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(a) Average Degree (SRW)
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(b) Average Self-description Length
(SRW)
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(c) Average Degree (MHRW)
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Figure 8: Improvement Trend: Relative Error of the Average Estimations vs Query Cost in Google Plus.

Distance Measure Dist(Theoretical, SRW) Dist(Theoretical, WE)
`∞ 0.0081 0.00549

K-L Divergence 0.47529 0.01834

Table 1: Distance between Theoretical Sampling Distribution and that of
SRW/WE

in Section 2, two key related concepts used in this paper are burn-
in period, which captures the number of steps a random walk takes
before converging to its stationary distribution [22]; and conver-
gence monitors, heuristic techniques for measuring on-the-fly how
long the burn-in period should be (i.e., determining when a random
walk should be stopped and a sample taken). Examples here in-
clude Geweke, Raftery and Lewis, Gelman and Rubin convergence
monitors (see [7] for a comprehensive review).
Random Walks on Social Networks: There have been extensive
studies (e.g., [1, 15, 18]) on the sampling of online social networks
which feature graph browsing interfaces [29] that enforce the afore-
mentioned local-neighborhood-only access limitation. [18] intro-
duces a taxonomy of sampling techniques - specifically, node sam-
pling, edge sampling and subgraph sampling. For the problem stud-
ied in this paper - i.e., sampling nodes from online social networks -
the usage of multiple parallel random walks is studied in [2], while
several studies (e.g., [18]) demonstrates the superiority of random
walk techniques such as Simple Random Walk (SRW), Metropolis-
Hastings Random Walk (MHRW) over baseline solutions such as
Breadth First Search (BFS) and Depth First Search (DFS). An in-
teresting issue studied in the literature is the comparison between
SRW and MHRW over real-world social networks - the finding
in [11] is that MHRW is less efficient than SRW because MHRW
mixes more slowly. While our technique discussed in the paper is
transparent to the input random walk, a similar comparison result
can be observed from our experimental results as well.
Improving the Efficiency of Random Walks: Most related to this

paper are the previous studies on improving the efficiency of ran-
dom walks over online social networks. To this end, [13] combines
random jump and MHRW to efficiently retrieve uniform random
node samples from an online social networks. Nonetheless, in order
to enable random jumps, this study assumes access to an ID gener-
ator which can sample a node uniformly at random with a high hit
rate - an assumption that is not satisfied by many online social net-
works and not assumed in this paper. Another study [26] considers
frontier sampling which converts input samples with uniform dis-
tribution to output samples with arbitrary target distribution. Our
study in the paper is transparent to this work - as we address the
problem of generating sample nodes rather than assuming access
to samples with pre-determined distributions. Also related to effi-
ciency enhancements are [17] which introduces a non-backtracking
random walk that converges faster with less asymptotic variance
than SRW and [30] which modifies the topology of the underlying
graph on-the-fly in order to get a faster random walk on the mod-
ified graph. A key difference between WALK-ESTIMATE and all
these existing studies is that while all existing techniques still wait
for convergence to the target distribution, we do not wait for con-
vergence, but rather proactively estimate the sampling distribution
and then use rejection sampling to achieve the target distribution.

9. FINAL REMARKS
In this paper, we developed WALK-ESTIMATE, a general pur-

pose technique for faster sampling of nodes over an online social
network with any target (sampling) distribution. Our key idea is
to conduct a random walk for a small number of steps, and fol-
low it with a proactive estimation of the sampling distribution of
the node encountered before applying acceptance-rejection sam-
pling to achieve the target distribution. Specifically, we presented
two main components of WALK-ESTIMATE, WALK which de-
termines the number of steps to walk, and ESTIMATE which en-
ables an unbiased estimation of the sampling distribution. Theoret-
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(c) Average Degree (MHRW)
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Figure 9: Relative Error of the Average Estimations vs Number of Samples in Google Plus.
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Figure 10: Comparing Sampling Distribution for Scale-Free Graph

ical analysis and extensive experimental evaluations over synthetic
graphs and real-world online social networks demonstrated the su-
periority of our technique over the existing random walks.
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