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ABSTRACT
In recent years, there has been much research in the adoption of
Ranked Retrieval model (in addition to the Boolean retrieval model)
in structured databases, especially those in a client-server environ-
ment (e.g., web databases). With this model, a search query re-
turns top-k tuples according to not just exact matches of selection
conditions, but a suitable ranking function. While much research
has gone into the design of ranking functions and the efficient pro-
cessing of top-k queries, this paper studies a novel problem on the
privacy implications of database ranking.

The motivation is a novel yet serious privacy leakage we found
on real-world web databases which is caused by the ranking func-
tion design. Many such databases feature private attributes - e.g.,
a social network allows users to specify certain attributes as only
visible to him/herself, but not to others. While these websites gen-
erally respect the privacy settings by not directly displaying private
attribute values in search query answers, many of them nevertheless
take into account such private attributes in the ranking function de-
sign. The conventional belief might be that tuple ranks alone are
not enough to reveal the private attribute values. Our investigation,
however, shows that this is not the case in reality.

To address the problem, we introduce a taxonomy of the prob-
lem space with two dimensions, (1) the type of query interface and
(2) the capability of adversaries. For each subspace, we develop
a novel technique which either guarantees the successful inference
of private attributes, or does so for a significant portion of real-
world tuples. We demonstrate the effectiveness and efficiency of
our techniques through theoretical analysis, extensive experiments
over real-world datasets, as well as successful online attacks over
websites with tens to hundreds of millions of users - e.g., Amazon
Goodreads and Renren.com.

1. INTRODUCTION

1.1 Motivation
While traditional structured databases generally support the Boolean

Retrieval model (i.e., return all tuples that exactly match the search
query selection condition), in recent years there has been much
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research into exploring the applicability of an alternate Ranked
Retrieval model (e.g., a kNN interface that returns top-k tuples
according to a suitable ranking function). The ranked retrieval
model has become an important component of many databases, es-
pecially in a client-server environment (e.g., web databases, where
a client specifies and sends queries via a web interface to a backend
database). Prior research has primarily focused on the effective
design of ranking functions and the efficient processing of top-k
queries for a given ranking function (e.g., [5, 7, 19]).

However, in this paper we investigate a novel problem on the pri-
vacy implications of database ranking, which has not been studied
before. We show how privacy leakage (through the top-k interface)
can be caused by a seemingly innocent design of the ranking func-
tion in such ranked retrieval models.

To understand how the privacy leakage occurs, note that many
databases in a client-server environment feature both public and
private attributes. For example, social networking websites often
allow users to specify privacy settings that hide certain attributes
from the public’s view, e.g., profile demographics such as race,
gender, income; location; past posts, etc. These websites honor the
privacy settings by omitting the private attributes from being dis-
played in the returned query answers. Thus, the results include a
ranked list of k tuples, but with only the public attributes displayed,
and the private attributes hidden.

The problem here, however, is that many websites indeed in-
clude these private attributes as input to the ranking function. The
purpose of doing so is, understandably, to make ranking more ef-
fective - e.g., the friend-search feature in a social network would
preferably return users that have similar demographics or behav-
ior patterns (e.g., posting with similar frequencies) as the user who
executes the search, as common-sense indicates that they are more
likely to be interested in each other. From the privacy perspective,
this design might look harmless as well - after all, while a ranking
function might take as input a large number of attributes, its output
is merely the (relative) rank of a tuple among returned results - not
even the actual ranking score! Naturally, the traditional belief here
is that it is impossible to infer private attribute values from just the
ranking of a returned tuple.

In our investigation of real-world client-server databases (includ-
ing popular web databases), we found this traditional belief to be
wrong. Specifically, in this paper, we develop a novel technique
which, by asking a carefully constructed sequence of top-k queries
and observing the corresponding change of tuple ranks in the query
answers, may successfully infer the value of private attributes.

Before introducing our technical results, we would like to first
illustrate the real-world impact of this privacy leakage by briefly
demonstrating a very simple attack one can deploy using this tech-
nique on Renren.com, the equivalent of Facebook in China which



has hundreds of millions of users. We chose this website as an
example not only because of its large user base, but because it sup-
ports extensive privacy settings - allowing a user to specify as pri-
vate any subset of profile attributes such as hometown, work affilia-
tion, university attended, etc. It also respects these privacy settings
in the display of search results - e.g., if a user specifies hometown
as private and “only visible to friends”, then the user’s hometown
information will be hidden from all search and/or recommendation
results unless the query is issued by a friend of the user.

Nevertheless, we also found that when ranking users in search or
recommendation results, the ranking function used by Renren.com
takes into account all attributes of a user’s profile, regardless of
whether a user has specified it to be private and/or who is issuing
the query. For example, Figure 1a shows the screenshot1 of the
ranked list of tuples (i.e., users) returned for a friend-search query
issued by a user LIONEL with hometown = Beijing, China and no
other profile attribute specified. The query is formed using the only
public attribute of our victim user TARGET (with a red target icon
in the screenshot), name = Jia Ming. Since TARGET sets his home-
town to be a private attribute “only visible to friends” and LIONEL
is not a friend of TARGET, the hometown of TARGET is hidden
from display in the query answer. Figure 1b shows the answer
to the exact same query after LIONEL changes his hometown to
Shanghai, China. The rank of TARGET now moves up from No. 3
to No. 1 in the new answer - and indeed ranks even higher than a
few other users with the same name from Shanghai and studying
in Fudan university (in Shanghai). The change of rank indicates a
strong likelihood of TARGET having hometown = Shanghai (even
though it does not form a proof). In this paper, we shall show how
one can indeed prove that TARGET must come from Shanghai using
just a few other query answers.

Figure 1: Demonstration of an attack over Renren

1.2 Novel Problem: Rank-Based Inference
The above motivating example led us to identify an important

and novel problem of ranked-based inference of private attributes.
From a conceptual standpoint, this problem is interesting as, to the
best of our knowledge, privacy compromise from tuple ranks has
not been studied before. From a practical standpoint, this prob-
lem is important as many client-server databases, especially web
databases that attract large amounts of user contributions, com-
monly offer top-k query interfaces yet contain sensitive data (e.g.,
profiles, demographics) that users would like to keep private.

We formalize the problem as follows. Consider a database D
with n tuples and m+m′ attributes, m of which A1, . . . , Am are
public while the other m′, B1, . . . , Bm, are private. The database
allows top-k queries where k is a small number (k � n). To spec-
ify a query q, one assigns a predicate on each of the m + m′ at-
tributes. The predicate can be point (i.e., Ai = v) or range (e.g.,
Bi ∈ {v1, v2} or ∗, i.e., the entire domain).

1Note that, since Renren.com does not have an English version,
this screenshot is taken in Chrome with the automated webpage
translation feature of Google Translations enabled.

Given a top-k query q, the database computes a predetermined
ranking function s(t|q) for each tuple t in the database, and returns
the k tuples with the smallest s(t|q). Of course, only the m pub-
lic attributes are displayed on the return interface - not the private
attributes or the ranking score. In most websites, the ranking func-
tion is a closely guarded secret - so we assume the adversary has
no knowledge of the ranking function other than two very basic
properties, monotonicity and additivity, which we shall define in §2
and demonstrate that they hold for almost all reasonable ranking
functions used in the real-world.

The objective of an adversary is to compromise the privacy of a
pre-determined victim tuple v. Of course, the adversary can read-
ily acquire the public attributes of v. Nonetheless, it does not know
the ranking function being used (and of course no knowledge what-
soever of the tuples’ ranking scores). Thus, the technical challenge
for the adversary is to unveil the private attribute values, e.g., v[B1],
by issuing a small number of queries through the web interface and
observing only the public attribute values of the returned tuples and
the order in which they are returned.

To the best of our knowledge, the above problem of inferenc-
ing sensitive data from the ranking of a tuple is very novel. While
top-k querying has been extensively studied by the database com-
munity [7, 15, 19], much of the efforts were focused on (1) devel-
oping techniques to answer such queries efficiently [19, 20], and
(2) designing proper distance/ranking functions for various appli-
cations [6, 22, 24]. There have been prior work on data privacy in
the general area of query inferencing [8,13,16], but most focus was
on learning individual values from aggregates such as SUM, MIN,
MAX, etc. We discuss related work in more detail in §8.

1.3 Overview of Technical Results
As one of our important contributions, we introduce a compre-

hensive taxonomy of the problem space according to two dimen-
sions: (1) the type of query interfaces widely used in practice and
(2) the capability of adversaries. Then, for each subspace of the
problem, we develop a novel technique which either guarantees
the successful inference of private attributes, or (when such an in-
ference is provably infeasible in the worst-case scenario) accom-
plishes the attack for a significant portion of real-world tuples.

Consider the first dimension. We distinguish between interfaces
which only support “point queries” (i.e., a single value must be
specified for each attribute in the query), and those that also sup-
port “IN queries” (i.e., where a subset/range of values can be spec-
ified for an attribute). For the second dimension, we distinguish
between two types of adversaries: (1) those who are “query-only”
(Q-only adversaries) - i.e., they are passive adversaries who only
issue queries and observe query answers, but never tamper with
(e.g., insert fake tuples into) the database; and (2) adversaries who
“query-and-insert” (Q&I-adversaries), i.e., they only issue queries
but also insert fake tuples into the database (e.g., by registering for
fictitious user accounts on a social media website).

We have carefully investigated the four problem subspaces aris-
ing out of this taxonomy, and developed four novel attacks: Q&I-
Point, Q-Point, Q&I-IN, and Q-IN. The fundamental ideas behind
these attacks include two critical reductions: One reduces the prob-
lem of compromising a private attribute to finding so-called differ-
ential queries (defined in §4.1) which exclude all but one values in
the domain. The second further reduces the problem to just finding
a query which returns the victim tuple - nevertheless, this reduction
holds only for Q&I-adversaries.

The differences on the applicability of these reductions lead to
fundamentally different feasibilities of the attack, as illustrated in
Table 1. Specifically, we find that while Q&I adversaries are always



Table 1: Feasibility, Worst- and Practical Query Cost

Q&I-Point Q-Point Q&I-IN Q-IN
Feasibility Yes Maybe Yes Maybe
Worst-case

∏m′

i=1 |V
B
i | N/A

∏m′

i=1 |V
B
i | N/A

In Practice High Highest Lowest Low
Note: |V B

i | is the domain size for private attribute Bi.

able to accomplish the attack, there are cases where Q-only ones
will fail. In terms of query cost, while the worst-case cost for even
Q&I adversaries can be exponential, the query cost in practice is
very reasonable - and can be significantly reduced when IN queries
are available, even though IN has no impact on the (theoretical)
worst-case query cost.

In summary, we make the following contributions in this paper:
• We have identified a novel and important problem of rank-

based inferencing over web databases.
• We introduce a comprehensive taxonomy of the problem space,

and identify four important subspaces based on varying database
interface limitations and adversarial capabilities.
• For each problem subspace, we developed nontrivial adver-

saries, and carried out a rigorous theoretical analysis of their
performance. Our results show that in almost all cases, the
adversaries can launch efficient and successful attacks.
• We performed extensive experiments over real-world datasets

and online experiments.

2. PRELIMINARIES

2.1 Model of Web Databases
As discussed in the introduction, many web databases store both

public and private attributes of a user. Consider an n-tuple (i.e.,
n-user) database D with a total of m+m′ attributes, including m
public ones A1, . . . , Am and m′ private ones B1, . . . , Bm′ . Let
V A
i and V B

j be the attribute domain (i.e., set of all attribute val-
ues) for Ai and Bj , respectively. For the purpose of this paper, we
consider V A

i and V B
j to be discrete and publicly known, and leave

studies of numeric/infinite/unknown domains to future research.
We use t[Ai] (resp. t[Bj ]) to denote the value of a tuple t ∈ D

on attributes Ai (resp. Bj). For the purpose of this paper, we as-
sume there is no duplicate tuple in the database (before an adver-
sary makes any modification to the database) - i.e., every bona fide
tuple has a unique value combination for the m + m′ attributes.
While we assume thatD does not change during the course of an at-
tack, we include discussions in §4.2.1 to address the scenario where
this assumption is violated.

Recall from the introduction that the database allows top-k queries
where k is a small number such as 10 or 50. Given a supported
query q defined below, the database computes the ranking function
s(t|q) for each tuple t ∈ D, and selects/returns k tuples in the
ascending order of s(t|q) (i.e., only the k tuples with minimum
s(t|q) will be returned some of which might not exactly match
the query predicates). Of course, only the public attribute values,
i.e., t[A1], . . . , t[Am], will be returned for each of the k tuples.
Of course, since we allow duplicates on public attribute values -
i.e., multiple tuples might share the same value combination on
A1, . . . , Am - there must be a way to distinguish different returned
tuples with the same public-attribute value-combination. For this
purpose, we assume each tuple to be returned alongside a unique
identifier (e.g., user ID) - and the adversary knows the unique iden-
tifier of the victim tuple as prior knowledge. It is important to note

that the ranking score s(t|q) is not returned - in addition, the design
of s(·|·) itself is a secret kept by the database owner.
Supported Queries: For the purpose of this paper, we consider
ranking functions/queries that take into account all public and pri-
vate attribute information. In other words, the web database sup-
ports queries which specify values/conditions on some or all of the
m + m′ (public and private) attributes. In this paper, we consider
two types of predicates that can be specified on an attribute: point
and IN. Let the predicate specified in a query q for attribute Ai
(resp. Bi) be q[Ai] (resp. q[Bi]). A point predicate assigns a sin-
gle value in the domain, i.e., q[Ai] ∈ V A

i , while an IN predicate
assigns a subset of values, i.e., q[Ai] ⊆ V A

i . Consider a dating
website as an example. While gender is often specified as a point
predicate (i.e., male or female), interests and age can be consid-
ered IN ones (i.e., find users who most closely match the interest
set {reading, travel, cycling, cooking} or age range [25, 30]). A
special example of IN predicate is q[Ai] = V A

i - i.e., q[Ai] = ∗ -
indicating “do-not-care” on an attribute.
Practical Constraints: Most, if not all, web databases enforce
practical constraints on how one might interact with the web in-
terface. The two most important constraints here are query-rate
limitation and tuple insertion constraint.

Most web databases enforce certain query-rate limits, i.e., limits
on the number of queries one can issue (e.g., from an IP address or
a user account) per time period (e.g., each day), in order to prevent
overburdening of the backend database and/or third-party crawling
of its contents. Hence an adversary must aim to minimize the query
cost of a rank-based inference attack, as otherwise it would have to
acquire more resources (e.g., more IP addresses, registering more
accounts) in order to issue all queries required by the attack.

Tuple insertion constraint, on the other hand, refers to ones abil-
ity to insert tuples into the database. Some web databases, includ-
ing many online social networks, do not enforce this constraint -
i.e., one can freely insert new tuples (i.e., user accounts) to the
database by registering for new accounts (e.g., using a new email
address). Nonetheless, there are also others that require users’ real
identities and use offline authentication to check them. For ex-
ample, catch22dating, a popular online dating website used in our
real-world experiments, requires each user to have an authenticated
identity as student of selected universities. For these databases, in-
serting new/fake tuples becomes extremely difficult, if not impos-
sible. We say that the web database enforces a tuple insertion con-
straint which prevents an adversary from inserting arbitrary tuples.

2.2 Properties of Ranking Function
There has been significant research in database ranking (e.g.,

[17,19,20]) which studies the design of ranking function s(t|q), in-
cluding in cases where the query has IN predicates (e.g., [18, 19]).
While this paper aims to study generic rank-based inferences that
work for a broad class of ranking functions, it is important to note
that no attack will work without assuming certain properties of the
ranking function. To understand why, consider a simple example
where s(t|q) is generated uniformly at random from [1, n]. Since
the rank of a tuple has nothing to do with the tuple’s (private) at-
tribute values, no adversary can compromise any private informa-
tion from the returned ranks. Thus, it is the objective of this sub-
section to define a minimum set of conditions that are satisfied by
most if not all ranking functions used in practice. Specifically, we
consider monotonicity and additivity, respectively as follows.
Monotonicity Condition: Intuitively, the monotonicity condition
simply states that, for a given query, the relative rank between two
tuples which differ only on one attribute should be determined by



that attribute alone. Formally, for a point-query interface, if two
tuples t and t′ differ only on Ai and t[Ai] = q[Ai], then t should
have a smaller distance to q than t′. More generally, we have the
following definition. Note that in this definition, we consider q[Ai]
(resp. q[Bj ]) to be a set (in the case of point-query, containing just
a single value) without introducing ambiguity.

Monotonicity: ∀q, t ∈ D, and i ∈ [1,m] (resp. j ∈ [1,m′]), if t
and t′ share the same value on all attributes except Ai (resp. Bj)
and t[Ai] ∈ q[Ai] while t′[Ai] 6∈ q[Ai] (resp. t[Bj ] ∈ q[Bj ],
t′[Bj ] 6∈ q[Bj ]), there must be s(t|q) < s(t′|q).

Additivity Condition: Intuitively, the additivity condition states
that, for two tuples t and t′, if t is already ranked higher than t′ in
query q, then further changing the predicate of q onAi (resp.Bj) to
exactly match t - i.e., making q[Ai] = t[Ai] (resp. q[Bj ] = t[Bj ])
- should not change the relative rank between the two tuples. More
formally, we have the following definition:

Additivity: ∀q and t, t′ ∈ D, if s(t|q) < s(t′|q), then there must be
s(t|q′) < s(t′|q′), where q′ is the same as q on all but one attribute
Ai (resp. Bj), on which q[Ai] = t[Ai] (resp. q[Bj ] = t[Bj ]).

Our studies of real-world web databases (in §7) verified this ob-
servation, as all websites considered satisfy both conditions.

3. PROBLEM SPACE
In this section, we define the rank-based inference problem stud-

ied in the paper. Specifically, we start with defining the objec-
tives of an adversary. Then, we partition the entire problem space
into four quadrants along two dimensions: the type of queries sup-
ported, and the type of operations an adversary can perform.

3.1 Adversary Model
The objective of an adversary is two-fold: compromising pri-

vacy and minimizing query cost. Privacy-wise, an adversary aims
to compromise private attributes of a victim tuple v. Without loss
of generality, we assume that the adversary aims to compromise the
value of v[B1] based on prior knowledge of all public attributes of
v, i.e., v[A1], . . . , v[Am]. In §4, we shall address cases where an
adversary aims to compromise all private attributes of v.

To ensure the versatility of our algorithms, we make a conser-
vative assumption that an adversary has no prior knowledge of the
ranking function other than the fact that it satisfies the monotonic-
ity and additivity conditions defined above. Clearly, all algorithms
in the paper still work if an adversary does know the ranking func-
tion. While it is possible that prior knowledge of certain ranking
functions can enable more efficient attacks than those in the paper,
we leave such ranking-function-specific studies to future work.

Given the query-rate limitation discussed in §2, an important
goal of the adversary is to minimize the query cost for the attack,
as otherwise the website-enforced limit on the number of queries
from each user (e.g., IP-address) may stop the attack from being
completed. To this end, it is important to note that our key effi-
ciency measure here is the number of requests issued to the web
database (hereafter referring to as the query cost, including both
search queries and requests to insert tuples, if the database does
not enforce the aforementioned tuple insertion constraint) - while
other measures such as local (CPU or I/O) processing overhead are
secondary.

3.2 Two Dimensions
The first dimension we use for partitioning the problem space is

the type of queries supported. There are two different cases: (1)
Point-Query Interface which requires a point predicate defined in

§2 to be specified for every attribute. An example here is the friend
recommendation offered by many social media websites - each user
has to complete his/her own profile to enable the feature, essentially
requiring the user to specify a point predicate on every public and
private attribute. (2) IN-Query Interface which supports IN queries
over all attributes. Clearly, here a user can choose “do not care” for
an attribute by assigning its entire value domain to the IN condition.
Since point queries are special cases of IN, all queries supported by
the point-query interface are also supported here.

The second dimension for partitioning the problem space is the
adversary power. Specifically, we consider the following two cases:
• Query-and-Insert (Q&I) Adversary can not only issue queries

but also insert tuples to the database. It can also update or
delete any tuple it inserted. These adversaries exist for web-
sites which do not enforce the tuple insertion constraint.
• Query-only (Q-only) Adversary can query the web database

but cannot change it. This is the case when the website en-
forces the tuple insertion constraint (see §2).

One can see from the definitions that Q&I adversaries are stronger -
i.e., any attack launched by a Q-only adversary can also be launched
by a Q&I-one, while the opposite is not true. We shall show later in
the paper that the ability to insert leads to significant differences on
the outcome of a rank-based inference attack. Specifically, while a
Q&I adversary can always accomplish the attack even in the worst-
case scenario, the same is not true for Q-only adversaries.

3.3 Problem Definition
Given the two dimensions, we partition the problem space into

four quadrants: (1) point query interface with Q&I adversaries, (2)
point query with Q-only, (3) IN with Q&I, and (4) IN with Q-only.
Problem Definition (Rank-Based Inference): Given a database D
and a victim tuple v ∈ D, find the shortest sequence of queries
q1, . . . , qc supported by the interface and a corresponding sequence
of tuple sets T1, . . . , Tc, such that

δ(q1(D ∪ T1), q2(D ∪ T2), . . . , qc(D ∪ Tc)) = v[B1]. (1)

where qi(D ∪ Ti) is the answer to qi over the D ∪ Ti and δ(·) is
a (deterministic) function for rank-based inferencing. For a Q-only
adversary, there must be T1 = · · · = Tc = ∅.

Naturally, the problem could be extended to infer multiple, if not
all, private attributes of victim tuple v. In fact, as we shall describe
in §4, our algorithm iteratively learns private attribute values one
at a time till v[B1] is inferred. Extending it to infer all attributes
is trivial. To better illustrate our ideas and to significantly simplify
the notations, in the theoretical discussions in this paper, we focus
on the case where k = 1 (note that k = 1 is actually a conserva-
tive worst-case assumption for the attack design), and discuss the
straightforward extension to larger k in the experiments section.
Running example of ranking function: All algorithms developed
in this paper work for any ranking function satisfying monotonicity
and additivity - so does all complexity and lower bound analysis.
Nonetheless, when studying the practical performance of attacks
and illustrating how different ranking-function designs affect attack
effectiveness, it is necessary to consider certain concrete ranking
function designs - for this purpose only, we consider the following
linear ranking function as a running example:

s(t|q) =
m∑
i=1

wA
i · ρ(q[Ai], t[Ai]) +

m′∑
i=1

wB
i · ρ(q[Bi], t[Bi]), (2)

where wA
i , w

B
i ∈ (0, 1] are the ranking weight for attribute Ai

and Bi, respectively. The distance measure for each attribute, i.e.,



ρ(q[Ai], t[Ai]), is a variation of the discrete metric: (1) ρ(q[Ai],
t[Ai]) = 0 if t[Ai] ∈ q[Ai] (note that for point queries, this means
t[Ai] being equal to the single value in q[Ai]), and (2) ρ(q[Ai],
t[Ai]) = 1 if t[Ai] 6∈ q[Ai].

Once again, we would like to note that the adversary has no
knowledge of the ranking function design whatsoever (other than
its monotonicity and additivity). This linear ranking function based
running example merely provides a concrete basis for the analysis
of attack performance in practice.

4. POINT QUERY INTERFACE
We start by considering a point query interface. Specifically,

we shall start with reducing rank-based inference to the problem
of finding pairs of differential queries based on the victim tuple v.
Then, we discuss the design of Q&I-Point and Q-Point, our rank-
based inference algorithms for Q&I and Q-only adversaries over a
point query interface, respectively.

4.1 Goal: Finding Differential Queries
We start by showing that, for the worst-case scenario of k =

1, the problem of compromising the private attribute B1 of victim
tuple v can be reduced to finding for each possible value of B1

except v[B1], i.e., ∀θ ∈ (V B
1 \v[B1]), a pair of differential queries

qθ and q′θ which satisfy three properties: (1) they share the same
predicate on all attributes but B1, (2) q′θ[B1] = θ while qθ[B1] 6=
θ, and (3) qθ returns the victim tuple v while q′θ does not - i.e.,

∀t ∈ D where t 6= v, s(t|qθ) > s(v|qθ),
∃t ∈ D with t 6= v such that s(t|q′θ) < s(v|q′θ). (3)

The proof of this reduction is straightforward: Due to the addi-
tivity condition, we can infer from (3) that the value of victim tuple
v on B1 must not be the same as q′θ[B1], i.e., v[B1] 6= θ. Since
we found differential queries qθ, q′θ for all θ ∈ V B

1 \v[B1], the only
remaining possibility is the correct value of v[B1].

While this reduction is the basis of our following discussions, it
is important to note that reduction in the opposite direction does not
hold - i.e., an adversary does not have to find all |V B

1 | − 1 pairs of
differential queries in order to compromise v[B1]. To understand
why, consider an example where a Q&I-adversary inserts into the
database a dummy tuple t with value 0 on all public and private
attributes. Then, upon issuing a query with q[Ai] = 0 and q[Bi] =
0 on all attributes, the adversary receives v rather than t as the No. 1
result. One can see that the adversary can safely infer v[B1] = 0
without issuing any additional query or identifying the differential
queries for any value of B1.

4.2 Q&I adversary
We develop Algorithm Q&I-Point in this subsection. Specifi-

cally, we start with a somewhat surprising finding - for a Q&I ad-
versary, as long as it has the ability to find a query that returns the
victim tuple v for a given database, then it can always successfully
compromise v[B1] (by finding differential queries for all other val-
ues in V B

1 ). Then, we present Algorithm Q&I-Point and analyze its
worst- and average-case query costs.

4.2.1 Reduction to finding a query that returns v
Algorithm Q&I-Point: To construct the reduction to finding one
query which returns the victim tuple, we start by assuming an ora-
cle FIND-Q which, upon given input of a database D and the victim

tuple v, returns a query q which returns v. We first develop Algo-
rithm Q&I-Point which calls upon this oracle FIND-Q to compro-
mise v[B1], and then introduce the design of FIND-Q afterwards.
The pseudocode of Q&I-Point is shown in Algorithm 1.

Without loss of generality, we assume the output of FIND-Q to
always have q[A1] = v[A1], · · · , q[Am] = v[Am]. The reason
here is simple - if q differs from v on any public attributeAi, we can
always change the attribute to q[Ai] = v[Ai] - the new query will
still return v due to the additivity condition of the ranking function.

We denote by V
′B
j the smallest domain value for private attribute

Bj . We start by inserting into the database a tuple t that has the
same value for public attributes as v. We set each of t’s private
attribute to V

′B
j . Then, we call FIND-Q over the new database to

discover q which returns v. Note that if FIND-Q fails to do so -
i.e., no query over the database returns v - then we already succeed
because, due to the no-duplicate assumption, the only scenario for
this to happen is when v = t. Given the result q of FIND-Q, we
note that q must differ from t on at least one private attribute -
again, if q = t and yet returns v, there must be v = t. Without
loss of generality, suppose that q differs from t on private attributes
B′1, . . . , B

′
h - i.e., ∀i ∈ [1, h], q[B′i] 6= t[B′i].

We now construct h+ 1 queries q0, . . . , qh as follows: all these
h + 1 queries share the exact same value as t on all attributes but
B′1, . . . , B

′
h. For those h attributes, we assign to query qi (i ∈

[0, h]) qi[B′j ] = q[B′j ] if j ≤ h − i and qi[B′j ] = t[B′j ] otherwise
(i.e., if j > h− i). The following table shows an example. Note at
the two extremes q0 = q and qh = t.

There are two important observations from the above query se-
quence: First, unless v = t, queries at the two ends must return
different results - specifically, q0 returns v while qh returns t. The
only exception here is when qh also returns v - but this must mean
v = t because qh exactly matches t - leading to an immediate com-
promise of v[B1]. Second, every pair of adjacent queries in the
sequence differ by exactly one attribute - i.e., query qi and qi+1

differ onB′h−i. Combining two observations, we know two things:
(1) there must exist a pair of adjacent queries qi and qi+1 such
that qi returns v while qi+1 does not - because otherwise all h+ 1
queries would return v, contradicting Observation 1. (2) this pair
of adjacent queries differ on exactly one attribute B′h−i. In other
words, they serve as a pair of differential queries for value t[B′h−i]
in the domain of B′h−i, and prove v[B′h−i] 6= t[B′h−i]. Note that
the process of finding this pair of differential queries takes at most
h ≤ m′ queries.

Of course, this may not yet achieve the adversarial goal of com-
promising v[B1]. Nonetheless, note that once we know v[B′h−i] 6=
t[B′h−i], we can insert into the database a new t which replaces
its value on B′h−i with another value (other than t[B′h−i]) in its
domain. We can then repeat the exact same process and get one
of only two possible outcomes: either (1) we find another pair of
differential queries and exclude from consideration a value for one
of the private attributes; or (2) an anomaly occurs - either FIND-Q
cannot find q or qh returns v instead of t - meaning t = v and we
have compromised v[B1] already.

One can see that, the worst-case scenario here is for us to re-
peat the process for

∑m′

i=1(|V B
i | − 1) times - more repetitions is

impossible because we would have already excluded all wrong val-
ues for B1, . . . , Bm′ . Throughout all repetitions, the number of
queries issued by Algorithm Q&I-Point (excluding those required
by FIND-Q) is O(m′ ·

∑m′

i=1 |V
B
i |).

Practical Implications: We now discuss the practical implications
of Algorithm Q&I-Point. First, while we shall address the design
and theoretical bounds of FIND-Q in detail next, we would like to



first point out here that, in practice, FIND-Q is usually a straightfor-
ward and efficient process, especially when there are many public
attributes. The reason is simple: those public attributes alone are
often sufficient to uniquely identify the victim tuple. Since FIND-Q
knows v[A1], . . . , v[Am], it largely just needs to avoid hitting the
few “fake” tuples Algorithm Q&I-Point inserts (by avoiding their
private attribute values) in order to find a query that returns v.

The cost of FIND-Q aside, there are three interesting observa-
tions we can make regarding Algorithm Q&I-Point. First, its query
cost depends on the SUM (not product) of domain size of private
attributes. This works to the attacker’s advantage in practice as
real-world websites often feature only a few private attributes with
small domains2. Nonetheless, this also means that large-domain at-
tributes such as ZIP code can be very costly to attack. Intuitively,
this is caused by nature of the point query interface - as each query
here “covers” only one of the many domain values.

The second observation we would like to make is the anytime
nature of the algorithm. While our problem definition focuses on
compromising v[B1], one can see from the design of Q&I-Point
that it indeed learns all private attributes of v. Specifically, every
iteration (costing at mostm′ queries) excludes one value from con-
sideration for one of the private attributes. Thus, even if we inter-
rupt the algorithm at anytime (say running out of query allowance
by the database), we would still have learned substantial informa-
tion about many private attributes. This anytime feature makes the
algorithm particularly difficult to thwart in practice.

Third, note from the design of Q&I-Point that all queries it is-
sues (including those by FIND-Q) must have public attribute values
equal to those of v. This makes the algorithm fairly resilient against
changes to the database during the course of an attack - because
the only changes that would affect the execution of Q&I-Point are
those that feature tuples with the exact same public-attribute value-
combination as v - an extremely unlikely event in practical databases.

Algorithm 1 Q&I-Point

1: Input: q, v Output: v[B1]
2: Hv = ∅; t[Ai] = v[Ai]∀i ∈ [1,m]; t[Bj ] = 0∀j ∈ [1,m′]
3: while v[B1] is not yet inferred do
4: Insert t into D
5: if q does not return v then q ← FIND-Q(v,Hv)
6: if no such q, then return t[B1] // case: t = v
7: Let B′1 . . . B′h be the attributes differing between t and q
8: i = 0; qi = q
9: for i = 1 to h do

10: qi = qi−1; qi[B
′
h−i+1] = t[B′h−i+1]

11: if qi and qi−1 return different tuples then
12: q = qi−1; Set t[B′i] to an unexplored value
13: break for loop

4.2.2 Query Cost Analysis
Algorithm FIND-Q: We now describe the algorithm for finding a
query q that returns v for a given database D. The design is mostly
straightforward - we randomly generate and issue a query q with
q[Ai] = v[Ai] for all i ∈ [1,m] and each q[Bj ] (j ∈ [1,m′])
drawn i.i.d. uniformly at random from V B

j - and repeat this pro-
cess until finding q that returns v. The only note of caution here
is that the random generation is done without replacement, and
with memory across different executions of FIND-Q. To understand

2e.g., in the case of dating website discussed in Section 7.3, all
private attributes are Boolean - e.g., “whether a user is willing to
consider matches of a different race.”

why, note from the design of Algorithm Q&I-Point that we only in-
sert tuples into the database, and do not tamper with or delete the
existing tuple values. Thus, any query which does not return v be-
fore cannot return v in the future - justifying the design.

One can see from the design of FIND-Q that it always succeeds.
As such, our focus here is to consider its query cost. First, all
calls of FIND-Q, altogether, consume a worst-case query cost of
O(
∏m′

i=1 |V
B
i |). While this seems like an outrageously high cost,

we make two interesting notes here: First, the worst-case scenario
indeed requires these many queries - as proved by the following
lower bound result which shows that the cost cannot be improved
beyond a constant factor. Second, the real-world query cost for
FIND-Q is likely much smaller, as demonstrated by an average-
case example study at the end of this subsection.
Lower Bound on Worst-Case Query Cost: The following theo-
rem shows that, in the worst-case scenario, no algorithm can ac-
complish the attack without issuing Ω(

∏m′

i=1 |V
B
i |) queries.

THEOREM 1. Given any ranking function and victim tuple v,
there exists a database D such that no Q&I-adversary can com-
promise v[B1] without issuing Ω(

∏m′

i=1 |V
B
i |) queries.

Due to space limit, please refer to [23] for all theorem proofs in
the paper. Intuitively, the proof relies on the fact that, in order for
an adversary to compromise v[B1], it must be able to find at least
one query which returns v. We could then construct a database D
where for any j ∈ [1,m′], every vij (i ∈ [1, |V B

j | − 1]) shares the
same value as v on all attributes but Bj . In addition, each vij takes
a unique domain value in V B

j that is different from v[Bj ]. Due to
the existence of these tuples, any query q which differs from v on at
least one attribute will not return v due to monotonicity condition.
Running Example Query Cost: We now consider how Q&I-Point
performs over the running example of a linear-combination ranking
function in Equation 2 and a database where each tuple is generated
i.i.d. randomly according to the uniform distribution, while the vic-
tim v is chosen uniformly from the database.

THEOREM 2. In the running example, the expected number of
queries Q&I-Point issues to compromise v[B1] is at most 1/p +∑m′

i=1(|V B
i | − 1), where

p =
∏

t∈D,t 6=v

1

2
+

1

2
· erf

 dA(v, t)√∑m′
i=1 2w

′2
i ·
|V B

i |−1

|V B
i |

2


 (4)

where erf(·) is the standard error function [10], and dA(v, t) is
the distance between v and t on public attributes - i.e., dA(v, t) =
w1 · ρ(v[A1], t[A1]) + · · ·+wm · ρ(v[Am], t[Am]), where ρ is the
distance function defined in the running example.

Due to space limit, please refer to [23] for all theorem proofs in
the paper. Note from (4) why the average-case query cost of FIND-
Q (and thereby Q&I-Point) is likely much smaller than its worst-
case bound: p is the probability for a query q randomly tested in
FIND-Q to return v. One can see that, when there is a large number
of public attributes or a small number of private ones - i.e., a larger
dA(v, t) or a smaller w′i, the probability for a tuple t (t 6= v) to
“overcome” its difference with q on public attributes (with which
v has zero difference) by private attribute values is fairly small -
leading to a larger p and, ultimately, a smaller query cost.

The query cost required for Q&I-Point to compromise v[B1] ac-
tually decreases with a smaller weight on the private attributes.
This observation seems counter-intuitive because when w′1 = 0,



no privacy disclosure occurs as the rank becomes independent of
v[B1] - but the worst disclosure occurs when w′1 takes the small-
est positive value! To understand why, note that the smaller private
ranking weights w′i are, the easier it is for an adversary to pinpoint
a query that returns v, as the adversary already has prior knowledge
of all public attribute values of v. Given that, for a Q&I-adversary,
finding a query returning v is (almost) equivalent with compromis-
ing v[B1], we have this seemingly counter-intuitive observation.

4.3 Q-only adversary
Design of Q-Point: For adversaries subject to the tuple-insertion
constraint, the feasibility of compromising v[B1] is not of certainty
as in the Q&I adversary case, as shown in the following theorem.

THEOREM 3. Given any victim tuple v, there exists a ranking
function s(·|·) and a database D such that no Q-only adversary
can perform a rank-based inference of v[B1] over D.

While the detailed proof of the theorem is available in [23], the
key idea of it is easy to explain: Consider the linear ranking func-
tion in the running example and a database with only two attributes,
one public A1 and one private B1. If the weighting on A1 is larger
than B1, and each tuple in the database takes a different value on
A1, then there is no way for a Q-only adversary to infer v[B1]
because the results of every possible query is already determined
without knowing the value ofB1 for any tuple. Specifically, a query
will always return the tuple that shares its value on A1, regardless
of what values the tuples have on B1. As such, the inference of
v[B1] from tuple ranks becomes infeasible.

Despite of the worst-case infeasibility, however, in practice it is
quite likely for a Q-only adversary to find enough queries to unveil
v[B1], as we shall show in the experimental results. To address
these cases, we now develop Algorithm Q-Point for a Q-only ad-
versary to launch a rank-based inference attack over a point query
interface. Once again, our goal here is to find a pair of differen-
tial queries qθ and q′θ for each value θ ∈ V B

1 \v[B1]. Like in the
Q&I-case, without loss of generality, we denote the domain values
in V B

1 as 0, 1, . . . , |V B
1 | − 1.

We start by calling Algorithm FIND-Q to find a query q which
returns v. Then, we construct and issue |V B

1 | queries f0(q), f1(q),
. . . , f|V B

1 |−1(q). While all these queries share the exact same pred-
icates as q on A1, . . ., Am, B2, . . ., Bm′ , there is fi(q)[B1] = i
for all i ∈ [0, |V B

1 | − 1]. Due to the additivity property, at least
one of these |V B

1 | queries must return v. If only one does, then our
attack on v[B1] already succeeds - the one which returns v must
have the same value as v on B1. If more than one return v, we
can do two things: First, we can exclude from consideration those
values corresponding to the queries that do not return v - for those,
we have already found their differential queries to support the ex-
clusion. Second, we can proceed to revise q (and correspondingly
fi(q)) as follows to continue the exclusion process.

A2 B2A1

B2 B3

B3

B3A2 B2 B3

q

Figure 2: Enumeration Tree in Algorithm Q-Point

Specifically, our query-revision process can be considered per-
forming a breadth-first search over the tree structure depicted in
Figure 2, which demonstrates a special case where m = 2 and
m′ = 3. In the tree, each node consists of a class of revisions to q.
Specifically, a node contains all queries that differ from q exactly

on the attributes that appear on the path from the node to the root
in the tree. For example, the bottom-left corner node in Figure 2
contains all queries that differ from q on A1 and A2.

During the search process, for each node encountered, we enu-
merate all queries q′ in the node and repeat the value-exclusion
process described above by issuing fi(q′) for all i ∈ [0, |V B

1 | −
1]. Note that the enumeration can be made more efficient with a
pruning-based optimization: If for a query q′, none of the |V B

1 |
queries fi(q′) returns v, then we can safely exclude from future
consideration all queries in the subtree of the current node which
only differs from q′ on public attribute values. Algorithm 2 sum-
marizes the pseudocode for Algorithm Q-Point.
Performance Analysis: One can see from the design of Q-Point
that, in the worst-case scenario, it issues enough queries to deter-
mine for every query specifiable through the point-query interface
whether it returns v. Thus, Q-Point always accomplishes the at-
tack as long as such an attack is at all feasible over the point-
query interface. Nonetheless, the query complexity of Q-Point is
O(
∏m
i=1 |V

A
i | ·

∏m′

i=1 |V
B
i |) - much higher than Q&I-Point, given

that real-world databases often feature more public attributes with
large domains.

We consider again the linear ranking function in the running ex-
ample and a database where each tuple is generated i.i.d. uniformly
at random. We have the following result for Q-Point:

THEOREM 4. In the above scenario, given q produced by FIND-
Q, the probability (taken over the randomness of database D) for
Q-Point to infer v[B1] after issuing only |V B

1 | queries is at least1−
∏

t∈D,t 6=v

1 + erf

(
(dA(v,t)−w′

1)√
2
∑m′

i=2(w
′2
i ·(|V

B
i |−1)/|V B

i |
2)

)

1 + erf

(
dA(v,t)√

2
∑m′

i=2(w
′2
i ·(|V

B
i |−1)/|V B

i |
2)

)

|V B

1 |−1

(5)

Similar to the Q&I case, the attack is more (likely to be) efficient
with a smaller |V B

1 |. Nonetheless, an interesting observation here
is that, contrary to the Q&I case, now the larger w′1 is, the more
efficient the attack is likely to be. On the other hand, the efficiency
also increases with a larger database size |D| and a smaller weight
on other private attributesw′i (as erf(x) has a larger derivative when
x is close to 0).

Algorithm 2 Q-Point

1: Input: v Output: v[B1]
2: while some query returns v do
3: q ← FIND-Q(v,Hv); Construct enumeration tree Tq for q
4: for i = 1 to m+m′ do
5: for each query node q′ in level i of Tq do
6: Construct queries f0(q′) . . . f|V B

1 |−1(q′)

7: if none return v then prune subtree(q′)
8: if only fj(q′) returns v then return j as v[B1]
9: Exclude query nodes fk(q′) that does not return v

10: return failure

5. IN QUERY INTERFACE

5.1 Q&I Adversary
For Q&I adversaries, the feasibility of rank-based inference at-

tack is established for point-query interface in §4. Since point-
query interface is a special case of IN, the attack feasibility here
is already established. Thus, our focus here is to study how the
additional power of IN queries further empowers Q&I adversaries.



Recall from §4 that, for Q&I adversaries, rank-based inference
can be fairly efficiently reduced to the task of FIND-Q - i.e., identi-
fying a (now IN) query returning victim v. We shall start by show-
ing that, despite of the larger space of queries, the reduction still
holds - leading to the design of Algorithm Q&I-IN. Then, we show
that, while FIND-Q for IN has the same worst-case query cost as in
Q&I-Point, the query cost in practice is likely much smaller.

5.1.1 Reduction to finding an IN query that returns v
We start by showing that, so long as a Q&I adversary can call

upon FIND-Q to identify an IN query q that returns v, it can always
infer v[B1] within O(m′ ·

∑m′

i=1 |V
B
i |) queries. The reduction in

§4 cannot be directly used here as it relies on the ability to find a
point query returning v - which we do not want FIND-Q to do over
an IN-query interface due to high query cost associated with it.

To enable the reduction to finding an IN query, the only differ-
ence from point-query case (§4.2.1) is that now the input q might
have ranges like {0, 1, 2} specified as predicates on Bi, instead
of a single value as in the point-query case (which we denoted as
0). Fortunately, this change does not alter the key design of re-
duction construction. What we do now is to define B′1, . . . , B′h
as those attributes on which the inserted tuple t has a value that
differs from the set specified in q. This could be that t[B′i] falls
outside of the range specified in q[B′i] (e.g., when t[B′i] = 3 while
q[B′i] = {0, 1, 2}; or that t[B′i] is in the range but not the only el-
ement of q[B′i] (e.g., when t[B′i] = 0 and q[B′i] = {0, 1, 2}. Here
is an example of the sequence of queries we construct:

A1, . . . , Am B′1 B′2 B′3 Bothers

q {0} {0,1} {1,2} {1} {0}
q0 {0} {0,1} {1,2} {1} {0}
q1 {0} {0,1} {1,2} {0} {0}
q2 {0} {0,1} {0} {0} {0}
q3 {0} {0} {0} {0} {0}
t 0 0 0 0 0

Once again, there must exist a pair of adjacent queries qi and
qi+1 such that qi returns v while qi+1 does not. The remaining
inference process follows §4.2.1. For example, if q1 returns v but
q2 does not, then we can safely infer that v[B′2] 6= 0 due to the
additivity condition. Similarly, if q2 returns v while q3 does not,
we can infer that v[B′1] 6= 0. Thus, just like in the Q&I-Point case,
excluding the query cost of FIND-Q, a Q&I-adversary requires at
most O(m′ ·

∑m′

i=1 |V
B
i |) queries to compromise v[B1].

5.1.2 Efficiency Enhancement in Q&I-IN
Given that the reduction still holds, we are now ready to study

how IN queries empower an adversary to quickly accomplish FIND-
Q and find a query that returns v. In the following, we describe a
concrete example which demonstrates the significant saving brought
by IN queries, followed by the design of Algorithm Q&I-IN.
Example of significant query savings: To understand why IN
queries significantly reduce the query cost, consider a simple ex-
ample where: (1) the number of public attributes m is sufficiently
large, so each tuple in the database has a unique value combination
for the m public attributes; and (2) the number of private attributes
m′ is even larger, so the probability for a randomly generated point
query to return v is extremely small.

The first observation from this example is that FIND-Q over a
point-query interface actually requires an extremely large number
of queries. Specifically, note from Theorems 1 and 2 that, for a
given m, the query cost can be made arbitrarily large with an in-
creasing m′. On the other hand, if IN queries are available, the at-

tack query cost - more specifically, the number of queries required
to find one query returning v - is exactly 1 because an IN query q
withAi = v[Ai] for i ∈ [1,m] andBj = V B

j (essentially “*”, i.e.,
do-not-care) for j ∈ [1,m′] always returns v.

One can see from the example that the usage of IN queries sig-
nificantly reduces the attack query cost because of a simple reason:
the ability for an adversary to eliminate all private attributes from a
query specification makes it much easier for FIND-Q to unveil the
victim tuple from the database, so that the adversary can compro-
mise the private attributes one at a time using the above-described
reduction. In other words, with IN queries, an adversary no longer
has to get lucky and guess multiple private attributes correctly at
the same time (e.g., in order to have v returned by a point query).
Design of Q&I-IN: Algorithm 3 depicts the pseudocode for Algo-
rithm Q&I-IN, which enables a Q&I-adversary to launch our rank-
based inference attack on v[B1] over an IN query interface. With
the algorithm, we start with a query q which has q[Ai] = v[Ai]
for all i ∈ [1,m] and q[Bj ] = V B

j for all j ∈ [1,m′]. Then, if q
does not return v, we gradually replace predicates onBi with point
predicates (i.e., Bi = v where v ∈ V B

i ). Specifically, we perform
what is essentially a breadth-first search process which enumer-
ates all value combinations for B1, {B1, B2}, {B1, B2, B3}, . . .,
{B1, . . . , Bm′} in order. For example, when V B

1 = V B
2 = {0, 1},

the queries we issue are B1 = 0, B1 = 1, B1 = 0 AND B2 = 0,
B1 = 0 AND B2 = 1, B1 = 1 AND B2 = 0, B1 = 1 AND
B2 = 1, . . ., where each query also includes q[Ai] = v[Ai] for
all i ∈ [1,m] and q[Bj ] = V B

j for all unspecified Bj . When we
find a query that returns v, we launch the above-described reduction
process to complete the attack of v[B1].

One can see from the algorithm design that, just like in the point-
query case, we guarantee a successful attack. But the worst-case
query cost for Q&I-IN is also just like Q&I-Point - i.e.,O(

∏m′

i=1 |V
B
i |).

As we shall demonstrate in the following worst-case analysis, this
query cost still cannot be improved beyond a constant factor.

Algorithm 3 Q&I-IN

1: Input: v Output: v[B1]
2: Initialize starting query q: q[Ai] = v[Ai] ∀i ∈ [1,m] and
q[Bj ] = V Bj ∀j ∈ [1,m′]

3: Iteratively convert q to a point query till it returns v
4: v[B1]← Q&I-Point(q, v)

5.1.3 Query cost analysis
The main result here is that, while the availability of an IN query

interface does not help a Q&I adversary at all in the worst-case
scenario, it does have the potential to significantly reduce the query
cost in practice - especially when the number of public attributes
is large. To understand why the worst-case scenario remains un-
changed, consider the construction in the proof of Theorem 1 which
inserts to the database

∑m′

i=1(|V B
i | − 1) tuples described in §4.

Given the worst-case assumption that, when there is a draw (i.e.,
s(t1|q) = s(t2|q)), any inserted tuple will be returned before the
victim v, one can see that the adversary gets no help from IN
queries - because as long as a query q contains an IN predicate,
say onBi, it is impossible for q to return the victim tuple v as there
must exist an inserted tuple which matches q on Bi, has the exact
same value combination as v on all other attributes, and therefore
will be returned ahead of v in the answer to q. Thus, the worst-case
query cost Q&I-IN remains Ω(

∏m′

i=1 |V
B
i |) - same as Q&I-Point.

THEOREM 5. In the running example, the expected number of
queries FIND-Q requires for finding a query that returns v is 1 if



mint∈D,t 6=v d
A(v, t) > 0, and at most

∑m′−1
h=1 (ch+1 · (1 − (1 −

p(h))ch) otherwise, where ch =
∑h
i=1

∏i
j=1 |V

B
i | and

p(h) =
∏

t∈D,t 6=v

1

2
+

1

2
· erf

 dA(v, t)√
2
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i=1 w
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i ·
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 . (6)

One can see from the theorem the substantial promise for IN
queries to significantly reduce the query cost - not only the query
cost can be cut to 1 when no other tuple shares the same public-
attribute value-combination as v, but the value of p(h) - i.e., the
probability for a query with h point-predicates on private attributes
to return v - actually decreases with h. As such, the query cost is
likely much smaller than Q&I-Point, especially when the number
of public attributes m is large (which leads to a large dA(v, t)).

5.2 Q-only adversary
Just like the availability of IN queries does not help reduce the

worst-case query cost for Q&I-adversaries, it cannot change the
(in)feasibility result for Q-only adversaries either. To understand
why, consider a database with the aforementioned linear ranking
function and all tuples sharing the same value on B1. Clearly, the
returned tuples will be of the same order regardless of what range
the query specifies on B1. Thus, there is no way for a Q-only ad-
versary to infer which value in v[B1] all tuples take - proving that
Q-only adversaries cannot guarantee the success of rank-based in-
ference even for IN query interfaces. Nonetheless, as we shall show
in this subsection and in the experimental results, the availability of
IN queries does help with reducing the query cost in practice, es-
pecially when the number of public attributes is large.

Algorithm 4 depicts the pseudocode for Algorithm Q-IN, which
enables a Q-only adversary to launch our rank-based inference at-
tack on v[B1] over an IN query interface. We start with calling
Algorithm FIND-Q to find one query q which returns v. Note that,
according to the design of FIND-Q, q always has q[Ai] = v[Ai]
for all i ∈ [1,m]. After obtaining q, Algorithm Q-IN issues |V B

1 |
queries f0(q), . . . , f|V B

1 |−1(q) defined in the same way as in §4 -
i.e., while all these queries are exactly the same as q on A1, . . .,
Am, B2, . . ., Bm′ , there is fi(q)[B1] = i for all i ∈ [0, |V B

1 | − 1].
Similar to the discussion in Algorithm Q-Point, one can see that at
least one of these queries must return v, and the attack is already
successful if only one of them does. If more than one returns v,
we can exclude from consideration those values corresponding to
queries that do not return v, and then gradually revise q according
to the following procedure.

Specifically, we start with revising q to q1, . . . , qm by chang-
ing the predicate of qi on Ai to (Ai IN V A

i ). For each qi which
returns v, we repeat the above process and issue fj(qi) for each
j ∈ [0, |V B

1 | − 1] that is not yet excluded as a possible value of
v[B1]. Once again, this either directly reveals v[B1] or further ex-
cludes additional values from consideration. If we still cannot pin
down v[B1] after enumerating q1, . . . , qm, we consider the process
by setting an additional public attribute to its entire domain. For
example, if q1 returns v, we construct q1,x1 , . . . , q1,xh , such that
(1) qx1 , . . . , qxh also return v, and (2) q1,i is the same as q1 on
all attributes but Ai, for which there is q1,i[Ai] = V A

i . We repeat
this value-exclusion process until finding the exact value of v[B1],
or when we have exhausted all combinations of public attributes -
at which time we move back to Algorithm FIND-Q, find another
query q which returns v, and attempt the revision process again.

One can see from the design of Algorithm Q-IN that its worst-
case query cost is the same as Q-Point, i.e.,O(

∏m
i=1 |V

A
i |·
∏m′

i=1 |V
B
i |).

Algorithm 4 Q-IN

1: Input: v Output: v[B1]
2: while some query returns v do
3: q ← FIND-Q(v,Hv)
4: for i = 0 to m do
5: for each

(
m
i

)
combination of C of {A1, . . . , Am} do

6: q′ ← q; q[Ai′ ] = V Ai′ ∀Ai′ ∈ C
7: Construct queries f0(q′) . . . f|V B

1 |−1(q′)

8: if only fj(q′) returned v then return j as V [B1]
9: Exclude query nodes that did not return v

For the running example and a database where each tuple is gener-
ated i.i.d. uniformly at random, we have the following results:

COROLLARY 1. In the above scenario, given q from FIND-Q
which (1) has point-predicates on S ⊆ {A1, . . . , Am}, (2) has
point-predicates on B1 and S′ ⊆ {B2, . . . , Bm′}, and (3) returns
v, the probability (taken over the randomness of database D) for
Q-IN to infer v[B1] after issuing only |V B

1 | queries is at least

1−
∏

t∈D,t 6=v

1 + erf

(
(dS(v,t)−w′

1)√
2
∑

i:Bi∈S′ (w′2
i ·(|V

B
i |−1)/|V B

i |
2)

)

1 + erf

(
dS(v,t)√

2
∑

i:Bi∈S′ (w′2
i ·(|V

B
i |−1)/|V B

i |
2)

)

|V B

1 |−1

(7)

The corollary follows directly from Theorem 4. We can observe
from the theorem the substantial promise for IN queries to signifi-
cantly reduce the query cost - specifically, note that the smaller S
or S′ is, the higher this expected ratio will be. As such, the overall
query cost is likely much smaller than Q-Point.

6. DISCUSSION

6.1 Non-discrete Attributes
In this paper, we considered the attributes to be discrete as they

are widely used. Further, their attribute domain can be easily in-
ferred such as from the list of values from web UI controls such
as dropdowns. Our proposed techniques can be directly extended
to handle non-discrete attributes by (essentially) testing the binary
correctness of each discretized range (in case of numeric data) or
keyword (in case of text data). For numeric data, we can approach
the problem by partitioning the numeric domain into discrete ranges
and then applying our algorithm over the discretized data. The dis-
cretization process can be done in a recursive fashion (from coarse
to fine) so we can infer the private value to an arbitrary precision.
While these baseline approaches may reveal certain private infor-
mation about non-discrete attributes, we note that their design can-
not address the various complex issues that might require different
problem definitions. For example, in the case of numeric attributes,
success could be defined as inferring the private value exactly or
as bounding it to a narrow range. This distinction is important as
it is possible to design interfaces where the precision to which an
attribute can be inferred can be restricted (say to 0.01). If the query
interface allows a range to be specified for each attribute, and the
ranking function simply assigns a score of 0 or 1 based on whether
the correct value lies within that range, then we can infer the at-
tribute to arbitrary precision. However, if the range can only be
specified to a particular precision, then the attack precision also
gets restricted. Refer to [23] for further discussion.
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Figure 3: Attack Success Rate
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Figure 4: Varying Maximum
number of tuples returned k
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Figure 5: Varying Number of Tu-
ples, n
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Figure 6: Varying Number of
Public Attributes, m
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Figure 7: Varying Number of Pri-
vate Attributes, m′
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Figure 8: Varying Weight of Pri-
vate Attribute, w′1
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Figure 9: Fraction of Uncompro-
mised Accounts
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Figure 10: Varying Domain Size
of Inferred Attribute

6.2 Defense Against Rank-based Inference
Since our main objective here is to unveil a novel rank-based

inference attack on web databases, a comprehensive discussion of
defense methodologies is beyond the scope of this paper. Please
refer to [23] for a more detailed discussion. Besides the ultimate
solution of excluding private attributes from being considered in
ranking, an obvious defense methodology is to enforce more strin-
gent interface constraints discussed in the paper - e.g., requiring a
user to answer a CAPTCHA challenge before issuing each query,
performing rigid authentication for each tuple insertion/update op-
eration etc. Another possible strategy here is to delay any new tu-
ples from appearing in query answers which dramatically affects
Q&I adversaries. Another category of defense is to adjust the as-
signment of public/private attributes and/or the design of ranking
function. For example, the database owner can be make more at-
tributes as private thereby increasing query cost for the adversary.
However, it is important to note that all defense strategies discussed
are essentially making a tradeoff between privacy protection and
the convenience of bona fide users, and therefore must be designed
and implemented carefully (e.g., after user studies).

7. EXPERIMENTAL RESULTS

7.1 Experimental Setup
Hardware and Platform: All our experiments were performed on
a quad-core 2 GHz AMD Phenom machine running Ubuntu 14.04
with 8 GB of RAM. The algorithms were implemented in Python.
Offline Datasets: To verify the correctness of our results, we started
by testing our algorithms locally over two real-world and one syn-
thetic dataset. We have full access to these datasets, along with full
control of the ranking function used. One dataset is from eHar-
mony [3], a prominent online dating service [21] and consists of
anonymized profile information of 500K users. Each user has 56
attributes, of which more than 30 are boolean. The second dataset is
Yahoo! Autos, which contains 200K used cars for sale in the Dallas-
Fort Worth area with 32 Boolean attributes and 6 categorical at-
tributes, the domain cardinalities of which vary from 5 to 447. The
third dataset is a synthetic Boolean i.i.d. dataset with 200K tuples
and 40 attributes, each following the uniform distribution.

The public and private attributes were randomly chosen from
the set of available attributes. By default, we randomly picked 20
attributes for testing, designated m = 10 of them as public and
m′ = 10 as private, while varying m and m′ between 10 and 30 in
various tests. Target attribute B1 was chosen uniformly at random
from all private attributes per iteration with its cardinality varying
between 2 to 122 (with an average of 13). By default, we used the
ranking function from (2) with all weights set to 1.
Online Demonstration: In order to demonstrate the success of
our attacks over real-world websites, we selected three high-profile
real-world websites - Renren.com, Amazon Goodreads, Catch22Dating
- and conducted live experiments using our algorithms. We would
like to note that, without a partnership with these websites, we do
not possess/assume any knowledge of their ranking function (other
than the monotonicity and additivity properties defined in §2, which
we verified through the correctness of our experiment outputs). The
results of the online experiments can be found in §7.3.
Performance Measures: As discussed earlier in §3, we measure
efficiency through query cost, i.e., the number of queries required
for each attack - consistent with prior work [11, 12].

7.2 Experiments over Real-World Datasets
Empirical Evaluation of Attack Success Rate: Figure 3 shows
the attack success rate of all our algorithms over 3 offline datasets
and the relevant algorithm (based on the problem subspace the web-
site falls) over 3 online datasets. As expected, Q&I-adversary has
100% success rate for all datasets. For Q-only adversaries over
real-world datasets, we were able to achieve a success rate of al-
most 100%. The same holds for online tests except CD - the main
reason here is that CD allows NULL value on the private attribute
we are targeting, leading to failed attacks.

In the following discussion of offline experiments, we focus on
results over eHarmony. Due to space limitations, please refer to
[23] for results on Yahoo! Autos and the synthetic dataset (which
are largely similar).
Query Cost versus k: We first investigated the performance of
our algorithms for different values of k. Figure 4 shows that query
cost decreases with higher values of k as expected. Extending our
algorithms for k > 1 is straightforward. First, we seek to find a
query that returns v in top-k (not just top-1). Second, we extend the



notion of differential queries (see §4.1) such that the v has a higher
rank for query q′θ than for qθ . The query cost of our algorithms can
be broadly categorized into two parts - the query cost to identify
a query q that returns the victim tuple and the query cost required
to construct additional queries from q through which the private
attribute is inferred. When the value of k increases, the former
query cost falls dramatically. Further, the figure also shows that
when IN-queries are available (Q&I-IN and Q-IN), the query cost
is lower than the cases where only point queries are allowed (Q&I-
Point and Q-Point), consistent with our discussions in §5.
Query Cost versus Database Size, n: Figure 5 depicts the impact
of database size on query cost when k = 1 (which is henceforth
used as the default setting unless otherwise specified). As expected,
the increase in database size do not have any major impact and only
results in a slight increase in overall query cost. This is due to
the fact that the number of queries needed to identify a randomly
chosen tuple increases much more slowly than the database size.
Query Cost versusm,m′: In our next experiments, we investigate
how varying the number of public and private attributes affect the
query cost. The results of these experiments are shown in Figures 6
and 7. As expected, when the number of public attributes increase,
the query cost drops significantly. When the number of public at-
tributes are limited, their values are not adequate to distinctly iden-
tify a random tuple. Hence, we need to resort to using randomly
chosen values for the private attributes which increases query cost.
However, when m increases, most tuples become uniquely identi-
fied based on their public attributes only. For a fixed m, the query
cost increases with increasing m′ - when the public attributes are
inadequate for uniquely identifying the victim tuple, our algorithms
resort to issuing queries where the private attributes are chosen ran-
domly from their respective value domains. But the number of such
possible queries increases with higherm′ - hence the phenomenon.
Query Cost versus Ranking Weights: In this experiment, we
fixed the weight of all public attributes to 1 and varied the weights
of private attributes w′i between 0.01 and 100. The results shown
in Figure 8 are consistent with our theoretical results from Sec-
tions 4 and 5. When the weights over private attributes decrease,
the query cost for Q&I adversaries also decreases. This is due to
the fact that identifying the query q that returns the victim tuple v
becomes much easier for this case. The opposite holds for Q-only
adversaries where increasing the weights decreases the query cost.
Other Experiments: In order to identify the fraction of tuples in
a database that could be successfully compromised using our algo-
rithms, we randomly chose 100K tuples and tried to compromise
them. Recall that the Q&I adversary based algorithms are always
guaranteed to succeed. Figure 9 shows that the Q-only algorithms
are able to compromise almost all the tuples. Even with a highly re-
strictive interface of k = 1, Q-Point compromises more than 99%
of the tuples. We then adapted our inference algorithms so that
they seek to infer all m′ = 25 private attributes. Figure 11 shows
the result. While the overall query cost seems high, the amortized
query per private attribute varies between 35 and 60. Figure 10
shows how varying the domain size of the private attribute affects
the query cost. Consistent with our analysis in [23], query cost
increases with larger domain size.

7.3 Online Demonstration
In the online experiments, we sought to compromise private at-

tributes of user profiles from Amazon Goodreads (GR), Catch22-
Dating (CD) and Renren.com (RR) respectively. A detailed de-
scription of the procedure we used and its correctness can be found
in [23]. Note that since we have no connection with these websites
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and thus do not have access to the ground truth, we limit the scope
to a small-scale proof-of-concept.
Renren: Renren (RR) [4] is a major Chinese social networking
website (similar to Facebook) with more than 160 million users.
The user profile consists of details like demographics, education
and work affiliation. The website supports extensive privacy set-
tings - allowing a user to specify any subset of profile attributes as
public, private or only visible to friends. In our experiments, we
focused on one attribute hometown province with a domain
size of 34 - which is set to private by all users we target. Ren-
ren has a search interface that accepts keyword queries on a user’s
public attributes such as profile name. It displays appropriate in-
formation depending on who issued the query - i.e. everyone can
see public attributes, only friends can see attributes marked as vis-
ible to friends and none can see the private attributes. The results
are ordered based on a ranking function that takes into account the
entire profile regardless of privacy settings (as shown in §1).

Renren enforces tuple insertion constraint and also allows NULL
values. We conducted our attack using Q-Point algorithm. One
can see from Table 2 that we were able to successfully infer the
private attribute for 75 out of 76 profiles with an average query cost
of 20 per profile. We also conducted an experiment to measure
the success rate of our attacks by varying k. The search interface
of Renren, has a large value of k (ranging in hundreds). In our
experiment, we artificially truncated the results for different values
of k and verified if we can infer the private attribute. Figure 12
shows that for k as little as 50, we achieve a success rate of 92%.
Catch22Dating: Catch22Dating (CD) [2] is an online dating web-
site where users create profiles that are then matched to other users.
The public attributes here capture the demographic information of
a user, whereas the private attributes specify a user’s matching pref-
erences - e.g., the one private attribute we focus on is Boolean “Is it
OK if your matches have been married before” (henceforth referred
to as Married). The search interface of Catch22Dating has an op-
tion called “Both Perspectives”, which enables the ranking function
to take into account both public and private attributes of all profiles
on the website. It does enforce the tuple insertion constraint by
requiring Student ID from selected universities during user regis-
tration. It also allows IN queries to be specified (e.g., one can set
an attribute to be “do not care” in the query). Hence, we model the
adversary as Q-only operating over an IN-interface.

The website allows NULL values on almost all attributes. As a
result, our Q-IN attack might fail simply because the user specified
NULL as the attribute value. One can see from Table 2 that out
of the 120 users we attacked, we compromised the private attribute
Married for 61 of them. For the other 60, either the user did
not specify whether he/she would like to accept matches who have
been married, or Q-IN attack fails on these users.
Amazon Goodreads (GR) [1] a social cataloging site where the
users can connect to each other and share their experience/opinions



about books. The user profile consists of demographic informa-
tion such as user name which is always public, and attributes
such as zipcode which can be set as private. Regardless of a
user’s choice on location privacy, the ranking function used in the
website’s “user search” interface ranks each user according to its
(geographic) distance from the location of the user performing the
search. Goodreads allows free and instant account registration - i.e.,
there is no tuple insertion constraint - but no range query. Hence
we use the Q&I-Point algorithm.

We started with registering 10 fake accounts with randomly gen-
erated ZIP codes, and launched Q&I-Point over it to verify the cor-
rectness of our algorithm. Then, to enable verification on real ac-
counts, we identified 53 “special” users at Goodreads who have
their ZIP code hidden but chose to reveal their city/state (in US).
We launched Q&I-Point successfully on all these users, and then
verified that every ZIP code we compromised indeed belongs to its
corresponding city/state revealed by the user.

Table 2: Summary of Online Experiments

#Accounts
Attacked

#Success Avg Cost
(Success)

Avg Cost
(Failure)

CD 120 61 60 660
GR 53 53 455 N/A
RR 237 229 19 34

8. RELATED WORK
Database Ranking: The area of ranking has been extensively stud-
ied in the context of deterministic [19] and probabilistic [20] data.
Processing top-k query when the ranking score is a combination of
scores of individual attributes was studied in [15]. A popular rank-
ing function is nearest neighbor [17] where the tuples are ordered
based on the distance between tuple t and the given query q. Other
categorizations such as monotone, generic or no ranking (such as
Skyline queries) has also been studied [19]. Recently, there have
been studies on learning the rank of a tuple [25].

Inference Control: Prior work on privacy inference [16] studied
the problem of inferring individual tuple values [8] from aggregates
such as SUM, MIN, MAX, etc. The field of inference control [13]
seeks to prevent such attacks by through query auditing, controlling
the number of tuples that match a query or modify query responses
using perturbation, distortion etc [9]. Recently, [14] has showed
that it is possible to infer the location of a user in a Location based
Social Network (LBSN) if the ranking function returns the distance
between the query and the victim tuple.

9. FINAL REMARKS
In this paper, we identified a novel problem of rank-based infer-

encing over databases that use ranked retrieval model. We intro-
duced a taxonomy of the problem space into four important sub-
spaces based on varying interface designs and adversarial capabili-
ties. For each problem subspace, we developed nontrivial attacking
algorithms and conducted theoretical analysis of their feasibility
and performance. We verified the effectiveness of the attacks us-
ing a comprehensive set of experiments on real-world datasets and
online demonstrations on high-profile real-world websites.

It is our hope that the paper initiates a new topic of research on
the privacy implications of database ranking; and future research
will address the many open problems, e.g., how to design effective
defensive strategies that thwart the rank-based inference of private
attributes yet maintain the utility of ranking functions.
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