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Abstract The rise of Web 2.0 is signaled by sites such as
Flickr, del.icio.us, and YouTube, and social tagging is es-
sential to their success. A typical tagging action involves
three components, user, item (e.g., photos in Flickr), and
tags (i.e., words or phrases). Analyzing how tags are as-
signed by certain users to certain items has important im-
plications in helping users search for desired information.
In this paper, we develop a dual mining framework to ex-
plore tagging behavior. This framework is centered around
two opposing measures, similarity and diversity, applied to
one or more tagging components, and therefore enables a
wide range of analysis scenarios such as characterizing sim-
ilar users tagging diverse items with similar tags, or diverse
users tagging similar items with diverse tags. By adopting
different concrete measures for similarity and diversity in
the framework, we show that a wide range of concrete anal-
ysis problems can be defined and they are NP-Complete
in general. We design four sets of efficient algorithms for
solving many of those problems and demonstrate, through
comprehensive experiments over real data, that our algo-
rithms significantly out-perform the exact brute-force ap-
proach without compromising analysis result quality.

Keywords collaborative tagging · dual mining framework ·
optimization · algorithm

1 Introduction

Tagging is a core activity on the social web. It reflects a wide
range of content interpretations and serves many purposes,
ranging from bookmarking websites in del.icio.us, organiz-
ing personal videos in YouTube, and characterizing movies
in MovieLens. While one can possibly examine tags used
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by a single user on a single item, it is easy to see that the
task becomes quickly intractable for a collection of tagging
actions involving multiple users and items. In this paper, we
aim to formalize the analysis of the tagging behavior of a
set of users for a set of items and develop appropriate algo-
rithms to complete that task.

A typical tagging action involves three components (i.e.,
dimensions), user, item, and tag. We propose to study a va-
riety of analysis tasks that involve applying two alternative
measures, similarity and diversity, to those components and
producing groups of similar or diverse items, tagged by groups
of similar or diverse users with similar or diverse tags. For
example, one possible analysis outcome could be: teenagers
use diverse tags for action movies or males from New York
and California use similar tags for movies directed by Quentin
Tarantino. In Section 1.1, 2.3, and 6.1, we will describe
some of these problem instances that are enabled in our frame-
work. A general dual mining framework that encompasses
many common analysis tasks is defined in Section 2.4, and
an extension to the framework is defined in Section 6.

A core challenge in this dual mining framework is the
design of similarity and diversity measures. For user or item
components, defined by (attribute, value) pairs, several ex-
isting comparison techniques have been proposed that can
leverage their structured nature or bipartite connections. Sec-
tion 2.1 illustrates some of those techniques.

Comparing similarity and diversity of tags used by var-
ious users on different items, however, presents a new chal-
lenge. First, tags are drawn from a much larger vocabulary
than user or item attributes and exhibit a long tail character-
istic. Second, it is often the case that different tags are used
for the same set of items and, accounting for those tags sep-
arately would not capture their co-usage. Finally, tags may
have linguistic connections such as synonymy. In order to
capture tag similarity and diversity, we propose to summa-
rize tags first to account for their co-usage and semantic re-
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Fig. 1 Tag Signature for All Users Fig. 2 Tag Signature for CA Users

lationships. Section 2.2 describes some techniques that we
borrow from Information Retrieval and Machine Learning
that can be used.

The tag component is also the most interesting among
the three to be analyzed. Figure 1 shows a rendering of a
tag summarization for Woody Allen movies in the form of
a tag cloud. Similarly, Figure 2 shows a summarization of
tags for the same movies from California users only. In both
cases, summarization is defined as a simple frequency-based
tag cloud where the size of a tag corresponds to how often it
has been used on those movies. While Woody and Allen are
not surprisingly common to both, the two clouds are differ-
ent: all users highlight the dramatic, tragic and disturbing
nature of those movies, and California users emphasize tags
such as classic and psychiatry. Moreover, one of the direc-
tor’s popular movies, Noiva Nervosa is prominent in the tag
cloud of all users, and yet is conspicuously absent in that of
California users. Our goal is to define analysis tasks that can
help users easily spot those interesting patterns and use that
knowledge in subsequent actions.

We emphasize that, in this study, it is not our goal to
advocate one particular similarity or diversity measure over
another. Rather, we focus on formalizing the Tagging Be-
havior Dual Mining (TagDM) framework and the problem
definitions, and designing algorithms that will work well for
most measures. The analysis problems formally defined in
our proposed framework fall into the wider category of con-
strained optimization problems. We are looking for groups
of tagging actions that achieve maximum similarity or di-
versity on one or more components while satisfying a set of
conditions and constraints. We first discuss a set of mining
tasks that our TagDM framework can handle, and then move
on to formalizing the general TagDM framework.

1.1 Problem Instances

Given that a typical tagging action involves three compo-
nents (i.e., users, items, and tags), a large number of con-
crete problem instances can be defined, with their variations
coming from two main aspects. The first category of varia-
tions depends on which measure (similarity or diversity) is

applied to which tagging components (users, items, or tags).
For example, a user can be interested in identifying similar
user groups who use similar tags for diverse item groups, or
in identifying diverse user groups who use similar tags for
similar item groups. Since there are three components, each
of which can adopt one of two measures, this variation alone
can lead to 23 = 8 different problem instances.

Since we are looking for result groups that achieve max-
imum similarity or diversity on one or more components
while satisfying a set of conditions and constraints, the sec-
ond category of variations depends on which components
the user is adding to the optimization goal and which com-
ponents the user is adding to the constraints. For example, a
user can be interested in finding tagging action groups that
maximize a tag diversity measure while satisfying user di-
versity and item similarity constraints, or groups that maxi-
mize a combination of tag diversity and user diversity mea-
sures while satisfying an item similarity constraint. Figures 1
and 2 depict an example of the former instance - diverse
users (all users and California users) maximizing tag di-
versity for similar items (Woody Allen movies). Since each
component can be part of the optimization goal, or part of
the constraint, or neither, this variation can lead to 33−1 =

26 different problem instances. Combining both categories
of variations, there is a total of 112 concrete problem in-
stances that our framework captures! We formalize such a
TagDM framework in Section 2. Of course, we can extend
the TagDM framework to add additional conditions to the
optimization goal(s) of these 112 instances based on user
needs, the details of which are described in Section 6.

Table 1 illustrates six of the problem instantiations that
we have investigated in details through the rest of the pa-
per. In particular, we focus on problems with all three com-
ponents with constraints on user and item and optimiza-
tion on the tag component, since those are the most novel
and intuitive mining problems. Under this setting, the user
and item components are used primarily for enforcing con-
straints (similarity/diversity) and in providing an intuitive
description of the tagging action groups. However, the op-
timization would be done over the tagging component. Two
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tagging action groups would be considered similar if their
tagging components have small distance between them.

Table 1 Concrete TagDM Problem Instantiations. Column C lists the
constraint dimensions and column O lists the optimization dimensions.

ID User Item Tag C O
1 similarity similarity similarity U,I T
2 similarity diversity similarity U,I T
3 diversity similarity similarity U,I T
4 diversity similarity diversity U,I T
5 similarity diversity diversity U,I T
6 similarity similarity diversity U,I T

1.2 Algorithms

Not surprisingly, as our complexity analysis shows in Sec-
tion 3, those problems are NP-Complete in general. We pro-
pose four sets of efficient algorithms for solving them, the
first three of which consider pair-wise aggregation measures
for capturing similarity and diversity while the fourth em-
ploys a more general mining measure. The first set incor-
porates Locality Sensitive Hashing (LSH) and can be used
for problems maximizing tagging action component similar-
ity. While traditional LSH is frequently used for performing
nearest neighbor search in high-dimensional spaces, our al-
gorithm finds the bucket containing the result set of our tag-
ging behavior analysis. The second set of algorithms bor-
rows ideas from techniques employed in Computational Ge-
ometry to handle the Facility Dispersion Problem (FDP) and
is effective for problems maximizing diversity. Both sets of
algorithms possess compelling theoretical characteristics for
problem instances optimizing the dual mining goal without
any constraints. For both sets, we also propose advanced
techniques that return better quality results in comparable
running time. The third set of algorithms use Hierarchical
Agglomerative Clustering (HAC) techniques and can be ap-
plied to problems maximizing either similarity or diversity.
It is particularly useful for handling complex mining prob-
lems, having additional conditions in optimization goals. All
three sets of algorithms consider some form of pair-wise dis-
tance measure for computing similarity or diversity. There-
fore, we propose a fourth set of more general algorithm that
is based on the Hill Climbing (HC) technique and can handle
any arbitrary mining function for similarity and diversity.

1.3 Contributions

In this paper, we make the following main contributions:

– We formalize the task of analyzing the tagging behavior
of a set of users for a set of items and propose a novel
general constrained optimization framework for tagging
behavior mining.

– We show that the tagging analysis problems are NP-
Complete and propose efficient algorithms for solving
the problems.

– We develop locality sensitive hashing based algorithms
for solving problems maximizing tagging action compo-
nent similarity. We design computational geometry based
algorithms for problem instances maximizing diversity.
We provide theoretical guarantees for both sets of algo-
rithms for handling problems optimizing the dual min-
ing goal without any constraints. We also propose hierar-
chical agglomerative clustering based and hill climbing
based algorithms that apply to both similarity and diver-
sity maximization problems, and are especially useful in
handling complex mining tasks.

– We perform detailed experiments on real data to show
that our proposed algorithms generate equally good re-
sults as exact brute-force in much less execution time.

2 The TagDM Framework

We model the data on a social tagging site as a triple 〈U, I,T 〉,
representing the set of users, the set of items and the tag vo-
cabulary, respectively. Each tagging action can be consid-
ered as a triple itself, represented as 〈u, i,T〉, where u ∈U ,
i ∈ I, T ⊂ T , respectively. A group of tagging actions is
denoted as g = {〈u1, i1,T1〉,〈u2, i2,T2〉, . . . ,}. We define a
user schema, SU = 〈a1,a2, . . .〉, to represent each user as a
set of attribute values conforming to the user schema: u =

〈u.a1,u.a2, . . .〉, where each u.ax is a value for the attribute
ax ∈ SU . For example, let SU = 〈age,gender,state,city〉,
a user can be represented as 〈18,student,new york,nyc〉.
Similarly, we define an item schema, SI = 〈a1,a2, . . .〉, to
represent each item as a set of attribute values, i= 〈i.a1, i.a2, . . .〉,
where each i.ay is a value for the attribute ay ∈ SI .

Each tagging action therefore can be represented as an
expanded tuple that concatenates the user attributes, the item
attributes and the tags: r = 〈ru.a1, ru.a2, . . . ,ri.a1,ri.a2, . . . ,T〉.
G denotes the set of all such tagging action tuples. Many so-
cial sites have hundreds of millions of such tuples. Most, if
not all, mining tasks involve analyzing sets of such tuples
collectively. While there are a number of different ways tag-
ging action tuples can be grouped, we adopt the view pro-
posed and experimentally verified in [9], where groups of
users (or items) that are structurally describable (i.e., shar-
ing common attribute value pairs) are meaningful to end-
users. Such groups correspond to conjunctive predicates on
user or item attributes. An example of a user describable
tagging action group is {gender= male,state=new york},
and of an item describable group is {genre=comedy,
director=woody allen}. Next we define an essential char-
acteristic of a set of tagging action groups.
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Definition 1 Describable User Group. A group of tagging
actions, g = {〈u1, i1,T1〉,〈u2, i2,T2〉, . . . ,}, are considered a
meaningful user group iff: ∃A ⊂ SU , |A| > 0, such that, for
each a ∈ A, ∃v,∀r ∈ g,ru.a = v. A set of attribute value
pairs, Dg

user = {a1=v1,a2=v2, . . . ,}, where ax ∈ A and vx is
the value of ax shared by all tuples in g, are called the user
group description. Furthermore, we say that tuples in g sat-
isfy Dg

user.

Definition 2 Describable Item Group. A group of tagging
actions, g = {〈u1, i1,T1〉,〈u2, i2,T2〉, . . . ,}, are considered a
meaningful item group iff: ∃A ⊂ SI , |A| > 0, such that, for
each a ∈ A, ∃v,∀r ∈ g,ri.a = v. We define item group de-
scription as Dg

item = {a1=v1,a2=v2, . . . ,}, where ax ∈ A and
vx is the value of ax shared by all tuples in g. We say that
tuples in g satisfy Dg

item.

Definition 3 Group Support. Given the input set of tag-
ging action tuples G, the support of a set of tagging action
groups G = {g1,g2, . . .} over G, is defined as SupportGG =

|{r ∈ G | ∃gx ∈ G ,r ∈ gx}|. Intuitively, group support mea-
sures the number of input tagging action tuples that belongs
to at least one of the groups in G .

Before we formalize the mining problems, we introduce
the core concept of Mining Function that computes a simi-
larity or diversity score using arbitrary evaluations over the
tagging action groups. Similarity and diversity are usually
estimated as functions of distance. In particular, aggregation
of pair-wise distances between the different objects (i.e., tag-
ging action groups) offers powerful means for solving many
real mining scenarios:

Definition 4 Pair-Wise Aggregation Dual Mining Func-
tion. A Pair-Wise Aggregation (PA) Dual Mining Function,
Fpa : G ×b×m→ float, takes as inputs: G , a set of tagging
action groups; b ∈ {users,items,tags}, a tagging behav-
ior dimension; m∈{similarity,diversity}, a dual min-
ing criterion. It has two component function Fp : gi× g j ×
b×m→ float and Fa : {s1,s2, . . .}→ float, where (gi,g j)

is a pair of distinct tagging action groups and each si is an
intermediate score produced by Fp, such that: Fpa(G ,b,m)=

Fa({Fp(gi,g j,b,m)}, ∀gi,g j ∈ G , i 6= j.

We now present a few examples of the pair-wise dual
mining function. The key to a pair-wise dual mining func-
tion is the pair-wise comparison function, Fp(g1,g2,b,m),
where g1 and g2 are distinct tagging action groups, and b ∈
{users,items,tags}, is a tagging behavior dimension, and
m ∈ {similarity,diversity}, is a dual mining criterion.

2.1 User & Item Dimensions Dual Mining

Given a user describable tagging action group1, its user di-
mension is effectively its user group description, i.e., a set
of (attribute, value) pairs that describes the group. There-
fore, given two user groups, g1 and g2, their similarity or
diversity can be captured mainly in two ways: 1) structural
distance between the user group descriptions and 2) set dis-
tance based on the items they have rated.

Let A be the set of user attributes shared between two
user describable tagging action groups g1 and g2, an exam-
ple of the pair-wise comparison function leveraging struc-
tural distance is the following:

Fp(g1,g2,users,similarity) = ∑a∈A sim(v1,v2)

where a.v1 and a.v2 belong to the set of user attribute value
pairs and sim can be a string similarity function that simply
computes the edit distance between two values or a more so-
phisticated similarity function that takes domain knowledge
into consideration. For example, a domain-aware similarity
function can determine New York City to be more similar to
Boston than to Dallas. Fp(g1,g2,users,diversity) can be
similarly defined using the inverse function.

Let g1.I and g2.I be the sets of items tagged by tuples in
g1 and g2, respectively, an example of the pair-wise compar-
ison function leveraging set distance is the following:

F ′p(g1,g2,users,similarity) =
|{r|r∈g1.I∧r∈g2.I}|
|{r|r∈g1.I∨r∈g2.I}|

which simply computes the percentages of items tagged by
both groups (akin to Jaccard distance.) If numerical ratings
are available for each tagging tuple, a more sophisticated set
distance similarity function can further impose an additional
constraint that an item is common to both groups if its aver-
age ratings in both are close. F ′p(g1,g2,users,diversity)

can be similarly defined using the inverse function.

2.2 Tag Dimension Dual Mining

The tag dimension is fundamentally different from the user
and item dimensions. First, there is no fixed set of attributes
associated with the tag dimension, therefore the structural
distance does not apply. Second, tags are chosen freely by
users using diverse vocabularies. As a result, a single tag-
ging action group can contain a large number of tags. Both
characteristics make comparing two sets of tags difficult.

We propose a two-step approach for handling the tag di-
mension. First, we propose an initial step to summarize the
set of all tags of a tagging action group into a smaller repre-
sentative set of tags, called group tag signature. Second, we
apply comparison functions to compute distance between
signatures. Once again, we are not advocating any partic-
ular way of producing signatures and/or comparing them.

1 Since the user and item dimensions share the same characteristics
in the dual mining framework, we present here only the user dimension
for simplicity.
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Rather, we simply argue for the need for tag signatures and
their comparisons.

Group tag signature generation: Given a group of tagging
actions g = {〈u1, i1,T1〉,〈u2, i2,T2〉, . . .}, we aim to summa-
rize the tags in T1∪T2∪ . . . into a tag signature Trep(g). The
general form of Trep(g) is {(tc1,w1),(tc2,w2), . . .}where tci
is topic category (can be a tag itself) and wi is weight, i.e.,
relevance of g for ci.

One can define several methods to compute tag signa-
tures. For example, when tags are hand-picked by editors
and hence the number of unique tags is small, a simple def-
inition can be Trep(g) = {(t,freq(t)) | t ∈ T1 ∪ T2 ∪ . . .},
where freq(t) computes how many times t is used in g.

Most collaborative tagging sites encourage users to cre-
ate their own tags, thereby creating a long tail of tags. This
raises challenges such as sparsity and the choice of different
tags to express similar meanings. Techniques from Infor-
mation Retrieval and Machine Learning such as tf*idf and
Latent Dirichlet Allocation (LDA) can be used for tag sum-
marization. LDA aggregates tags into topics based on their
co-occurrence and reason at the level of topics, and han-
dles long tail issues [2]. Also, a Web service such as Open
Calais2 can be used to match a set of tags to a set of pre-
defined categories through sophisticated language analysis
and information extraction.

Comparing group tag signatures: When tagging action
groups are represented as tag signatures over the same set
of topics, we can leverage many existing vector comparison
functions to compute the distance between any two group
tag signature vectors pair-wisely. An example is simply co-
sine similarity as follows:
F ′′P (g1,g2,tags,similarity)= cos(θ(Trep(g1),Trep(g2))),
where θ is the angle between the two vectors. F ′′P (g1,g2,tags,

diversity) can be defined similarly
The comparison can also be enhanced by using an ontol-

ogy such as WordNet to compare entries of similar topics.

2.3 Concrete Problem Instances

We are now ready to formally define two of the concrete dual
mining problems listed in Table 1 in the introduction. The
first one (Problem 2 in Table 1) aims to find similar user sub-
populations who agree most on their tagging behavior for a
diverse set of items. The second one (Problem 4 in Table 1 )
aims to find diverse user sub-populations who disagree most
on their tagging behavior for a similar set of items.

Problem 2 Identify a set of tagging action groups, Gopt =

{g1,g2, . . .}, such that:

– ∀gx ∈ Gopt , gx is user- and/or item-describable;

2 https://www.opencalais.com/

– 1≤ |Gopt | ≤ k;
– SupportGopt

G ≥ p;
– F1(Gopt ,users,similarity)≥ q;
– F2(Gopt ,items,diversity)≥ r;
– F3(Gopt ,tags,similarity) is maximized.

where F1 and F2 are structural similarity based dual mining
functions as defined in Definition described in Section 2.1,
and F3 is the LDA based tag dual mining function as de-
scribed in Section 2.2.

For k = 2, p = 100, q = 0.5, and r = 0.5, solving the
problem on the full set of tagging action tuples in Movie-
Lens [8] can give us the following Gopt :

g1 = {〈gender,male〉,〈age,young〉,〈actor,j.aniston〉,
(comedy,drama,friendship)}

g2 = {〈gender,male〉,〈age,young〉,〈actor,j.timberlake〉,
(drama,friendship)}

which illustrates the interesting pattern that male young users
assign similar tags, drama and friendship, to movies with
Jennifer Aniston and Justin Timberlake, the former for her
involvement in the popular TV show Friends and the latter
for his movie The Social Network.

A closely related problem to Problem 2 is to inverse
the similarity and diversity constraints for the user and item
components, i.e., finding diverse user sub-populations who
agree most on their tagging behavior for a similar set of
items (Problem 3 in Table 1 in the introduction). Both prob-
lems focus on optimizing the tag similarity and therefore
can be solved using similar techniques. Next, we define a
problem that aims to identify groups that disagree on their
tagging behavior.

Problem 5 Identify a set of tagging action groups, Gopt =

{g1,g2, . . .}, such that:

– ∀gx ∈ Gopt , gx is user- and/or item-describable;
– 1≤ |Gopt | ≤ k;
– SupportGopt

G ≥ p;
– F1(Gopt ,users,diversity)≥ q;
– F2(Gopt ,items,similarity)≥ r;
– F3(Gopt ,tags,diversity) is maximized.

where F1, F2, and F3 are similarly defined as in Problem 2.
For k = 2, p = 100, q = 0.5, and r = 0.5, solving the

problem on the full set of tagging action tuples in Movie-
Lens can give us the following Gopt :

g1 = {〈gender,male〉,〈age,teen〉,〈genre,action〉,
(gun,special effects)}

g2 = {〈gender,female〉,〈age,teen〉,〈genre,action〉,
(violence,gory)}

which illustrates teenaged male users and female users have
entirely different perspectives on action movies. This gives
a user a new insight that there is something about action
movies that is causing the different reactions among two dif-
ferent groups of users.
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2.4 The TagDM Framework

The formal definitions for Problems 1 and 4 share a num-
ber of similarities. The objective is to identify a set of tag-
ging action groups that maximizes similarity/diversity over
a specific dimension. In addition, it also has constraints on
the number of results, their coverage and whether similar-
ity/diversity measures over individual dimensions exceed cer-
tain threshold.

In this paper, we describe a constrained optimization based
framework for tagging behavior mining. The framework is
very general such that each of the concrete problem instances
previously described can naturally be defined. Additionally,
it is also easily extensible to explore complex objective func-
tions and constraints depending on user needs.

We formally define the TagDM framework in the follow-
ing definition.

Definition 5 Tagging Behavior Dual Mining (TagDM) Prob-
lem. Given a triple 〈G,C,O〉 in the TagDM framework where
G is the input set of tagging actions and C, O are the sets of
constraints and optimization criteria respectively, the Tag-
ging Behavior Dual Mining problem is to identify a set of
tagging action groups, Gopt = {g1,g2, . . .} for b ∈
{users,items,tags} and m∈{similarity,diversity},
such that:

– ∀gx ∈ Gopt , gx is user- and/or item-describable;
– klo ≤ |Gopt | ≤ khi;
– SupportGopt

G ≥ p;
– ∀ci ∈C,ci.F(Gopt ,b,m)≥ threshold;
– Σo j∈O,o j.F(Gopt ,b,m) is maximized.

Intuitively, TagDM aims to identify a set of user- and/or
item-describable sub-groups from input tagging actions, such
that the dual mining constraints are satisfied and a dual min-
ing goal is optimized. We now clearly see how this frame-
work generalizes the common problem instances given in
Section 2.3. The notation ci.F refers to a function (associ-
ated with constraint ci) that measures similarity/diversity of
the corresponding dimension. Similarly, the notation o j.F
represents the dual mining function that operates over the
specific dimension whose value must be optimized.

Notice that, the definition of TagDM problem is not lim-
ited to pair-wise aggregation dual mining functions, described
in Definition 4. Pair-wise dual mining functions has a num-
ber of appealing properties - they are very common, can
be computed efficiently, and offers a vast literature of tech-
niques to exploit for developing fast solutions. However, re-
stricting to pair-wise functions severely limits the expres-
siveness and generality of our TagDM framework.

General dual mining functions takes as input a set of tag-
ging action groups and performs a holistic analysis over the
entire set. They are not restricted to identifying and then ac-
cumulating the local properties at the tagging action group

level. A number of optimization functions cannot be easily
be defined in terms of pair-wise aggregation functions. Here
are some examples:

– Identify a set of tagging action groups such that the vari-
ance of individual tagging actions is minimized. This
helps us find user-describable and/or item-describable
groups who share similar tagging behavior.

– Identify a set of tagging action groups such that the num-
ber of distinct tags they use is minimized. This helps us
discover user-describable and/or item-describable groups
where there is an universal agreement on the tag usage.

– Identify a set of tagging action groups such that their tag
vocabulary (obtaining by performing union of all tag-
ging actions) form a coherent ontology - either they all
are synonyms, antonyms or occur within a specific dis-
tance of each other in an Ontology service such as Word-
net.

The generalized dual mining function can be formally
defined as :

Definition 6 Dual Mining Function. A Dual Mining Func-
tion, F : G × b×m→ float, takes as inputs: G , a set of
tagging action groups; b ∈ {users,items,tags}, a tag-
ging behavior dimension; m ∈ {similarity,diversity},
a dual mining criterion; and produces a float score, s, that
quantifies the mining criterion over the particular dimension
for the set of tagging action groups.

3 Complexity Analysis

In this section we provide the proof that the Tagging Be-
havior Dual Mining problem is NP-Complete. The decision
version of the TagDM problem is defined as follows:

Given a triple 〈G,C,O〉, is there a set of tagging ac-
tion groups Gopt = {g1,g2, . . .} such that ∑o j∈O(o j.Wt ×
o j.F(Gopt ,o j.D,o j.M)≥ α subject to:

– ∀gx ∈ Gopt ,gx is user- and/or item-describable.
– klo ≤ |Gopt | ≤ khi
– SupportGopt

G ≥ p
– ∀ci ∈C,ci.F(Gopt ,ci.D,ci.M)≥ ci.T h

Theorem 1 The decision version of the TagDM problem is
NP-Complete.

Proof: The membership of decision version of TagDM
problem in NP is obvious. To verify NP-Completeness, we
reduce Complete Bipartite Subgraph problem (CBS) to our
problem and argue that a solution to CBS exists, if and only
if, a solution our instance of TagDM exists. First, we show
that the problem CBS is NP-Complete.

Lemma 1 Complete bipartite subgraph problem (CBS) is
NP-Complete.
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Proof: The decision version of CBS is defined as follows:
Given a bipartite graph G′ = (V1,V2,E) and two positive

integers n1 ≤ |V1|,n2 ≤ |V2|, are there two disjoint subsets
V
′
1 ⊆V1,V

′
2 ⊆V2 such that |V ′1|= n1, |V

′
2|= n2 and u∈V

′
1,v∈

V
′
2 implies that {u,v} ∈ E.

The membership of CBS in NP is obvious. We verify
the NP-Completeness of the problem by reducing it to Bal-
anced Complete Bipartite Subgraph (BCBS) problem which
is defined as : Given a bipartite graph G′′ = (V

′′
1 ,V

′′
2 ,E

′
)

and a positive integer n
′
, find two disjoint subsets V

′′′
1 ⊆

V
′′
1 ,V

′′′
2 ⊆V

′′
2 such that |V ′′′1 |= |V

′′′
2 |= n

′
and u ∈V

′′′
1 ,v ∈V

′′′
2

implies that {u,v} ∈ E
′
. This problem was proved to be NP-

Complete by reduction from Clique in [26]. We can reduce
BCBS to CBS by passing the input graph G′′(V

′′
1 ,V

′′
2 ,E

′
) of

BCBS to CBS and setting n1 and n2 to n
′
. If a solution exists

for the CBS instances, then the disjoint subsets V
′′′
1 ,V

′′′
2 form

a balanced complete bipartite subgraph in G′′. ut

We have already established that TagDM problem is in
NP. To verify its NP-Completeness, we reduce CBS to the
decision version of our problem. Given an instance of the
problem CBS with G

′
=(V1,V2,E) and positive integers n1,n2,

we construct an instance of TagDM problem such that there
exists a complete bipartite subgraph induced by disjoint ver-
tex subsets V

′
1 ⊆ V1,V

′
2 ⊆ V2 and |V ′1| = n1, |V

′
2| = n2, if and

only if, a solution to our instance of TagDM exists.
First, we create an user schema SU = 〈a1,a2, . . . ,a|V2|〉

such that for each vertex v j ∈ V2, there exists a correspond-
ing user attribute a j ∈ SU . Next, we define a set of users
U = {u1,u2, . . . ,u|V1|}. Again, for each vertex vi ∈ V1 there
exists a corresponding user ui ∈U .

For all pairs of vertices (vi,v j),vi ∈ V1,v j ∈ V2 , we set
ui.a j to 1 if {vi,v j} ∈E; else, we set it to a unique value such
that ux1.ay1 6= ux2.ay2 unless x1 = x2,y1 = y2. Intuitively, we
set the j-th attribute of i-th user to 1 if an edge exists between
vertex pairs (vi,v j); else, we set it to a unique value that is
not shared with any attribute of any user. One possible way
to assign the unique attribute values is to pick a previously
unassigned value from the set [2, |V1| × |V2|+ 1]. Since the
number of possible edges is at most |V1|× |V2|, this set suf-
fices to generate unique attribute values.

We construct an instance of the TagDM problem where
I = {i} and T = {t}. This results in a set of tagging ac-
tions, G = {〈u1, i, t〉, . . . ,〈u|V1|, i, t〉} where only the user di-
mension plays a non-trivial role in determining the problem
solution. Given a pair of users, the pairwise similarity func-
tion F1 on user dimension measures their structural similar-
ity by counting the number of attribute values that are shared
between them. Intuitively, the problem collapses to that of
finding a subset of users who share a subset of attributes.

We then define our TagDM problem instance as : For a
given a triple 〈G,C,O〉, identify a set Gopt of tagging action
groups such that F3(Gopt , tags,m)≥ 0 subject to:

– 1≤ |Gopt | ≤ n1
– SupportGopt

G ≥ n1
– F1(Gopt ,users,similarity)≥ n2×

(n1
2

)
If there exists a solution to this TagDM problem instance,

then there are n1 users who have identical values for at least
n2 of their attributes. If two users ux and uy have same val-
ues for a set of attributes A, then for all attributes a ∈ A,
ux.a = uy.a = 1. In other words, whenever the attributes of
two users overlap, the shared attributes can only take a value
of 1. Any other symbol that was assigned is unique and can-
not overlap by construction. If there exists a subset of at-
tributes A′ ⊆ SU and a subset of users U ′ ⊆U , then the cor-
responding vertices in V1 and V2 form a complete bipartite
subgraph solving the input instance of BCS. Thus TagDM
problem is NP-Complete. ut

3.1 Exact Algorithm

A brute-force exhaustive approach (henceforth, referred to
as Exact) to solve the TagDM problem requires us to enu-
merate all possible combinations of tagging action groups
in order to return the optimal set of groups maximizing the
mining criterion and satisfying the constraints. The number
of possible candidate sets is exponential in the number of
groups. Evaluating the constraints on each of the candidate
sets and selecting the optimal result can thus be prohibitively
expensive. Each tagging action group is associated with a
group tag signature vector (the size of which is determined
by the cardinality of the global set of tag topics), which may
introduce additional challenges in the form of higher dimen-
sionality. Therefore, we develop practical efficient solutions.

We develop two sets of algorithms that are capable of
solving all 112 concrete problem instances that TagDM frame-
work captures. The first set comprises of locality sensitive
hashing based algorithms for handling TagDM problem in-
stances maximizing similarity of tagging action components.
The algorithms are efficient in practice, but cannot handle
TagDM problem instances maximizing diversity. The sec-
ond set is based on techniques employed in computational
geometry for the facility dispersion problem and is our so-
lution for diversity mining problem instances.

Next, we discuss ways to extend the general TagDM
framework, i.e., Definition 5, and further develop two ad-
ditional algorithms which are capable of handling complex
mining tasks. The first of these algorithms draws inspiration
from hierarchical clustering methods and handles problem
instances maximizing similarity as well as those maximizing
diversity. The technique is particularly useful for handling
mining tasks which involve additional conditions and crite-
ria in the optimization goal of the general TagDM frame-
work. The second of these algorithms consider the more
general mining function in Definition 6 as opposed to the
pairwise measures used by all the remaining algorithms.
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4 LSH Based Algorithms

The first of our algorithmic solutions is based on locality
sensitive hashing (LSH) which is a popular technique to
solve nearest neighbor search problems in higher dimen-
sions [24]. LSH is preferred over several seemingly promis-
ing techniques (such as constructing efficient indices, which
suffers from the curse of dimensionality) because it scales
gracefully to higher dimensional data, is efficient and pro-
vides theoretical guarantees.

LSH performs a probabilistic dimensionality reduction
of high dimensional data by projecting input items in higher
dimension to a lower dimension such that items that were in
close proximity in the higher dimension retain their proxim-
ity in lower dimensional space with high probability. LSH
hashes an input item such that similar input items fall into
the same bucket (i.e., uniquely definable hash signature) with
high probability. In other words, all the input items in the
same bucket are highly likely to be similar.

A classical application of LSH is to identify nearest neigh-
bors efficiently. Typically, the input items in LSH are high
dimensional vectors such as multimedia content. There are
two major parameters for LSH : d′, the number of hash func-
tions (which also determines the lower dimension to which
items are projected to) and l, the number of hash tables. A
hash table is associated with d′ hash functions randomly
chosen from a hash family that is problem specific. Each
hash function accepts a vector in high dimension and returns
a scalar. By concatenating the result of d′ hash functions,
we get a d′ dimensional vector that also forms a distinct
hash signature for the item. All the input items that have
identical hash signatures are said to fall in the same bucket.
This process is repeated for all the l hash tables. Intuitively,
each hash table can be considered as a partition of the input
items such that similar items fall into same partition with
high probability. Typically, each hash table results in differ-
ent partition of the input data based on the hash functions
associated with it.

Once the input data has been projected to lower dimen-
sions, it can then be used for applications such as identify-
ing nearest neighbors of a given item. For each of the l hash
tables, we project the input query item and identify which
bucket it falls into. All the items that co-occur in any of the l
buckets the input query items fall into are considered as can-
didate nearest neighbors. However, the set of candidates is
usually much smaller than the size of input items and allows
nearest neighbor(s) to be computed efficiently.

LSH guarantees a lower bound on the probability that
two similar input items fall into the same bucket in the pro-
jected space and also the upper bound on the probability that
two dissimilar vectors fall into the same bucket. For any pair
of points in a high-dimensional space and a given hash func-
tion h, P1 is the probability of two close points receiving the

same value after hashing. P2 is the probability of two far-
apart points falling receiving the same value after hashing.
We want P2 < P1 and typically P1 > 1

2 . Formally, given a
pair of nearby points p1,q1 (defined as points within dis-
tance R1) and far-apart points p2,q2 (those with distance at
least R2 = cR1) we have:
P[h(p1) = h(q1)] ≥ P1 for dist(p1,q1)≤ R1

P[h(p2) = h(q2)] ≤ P2 for dist(p2,q2)≥ R2 (1)

Two items fall into the same bucket if they receive iden-
tical values for each of the d′ independently chosen hash
functions. After projecting the input items from higher di-
mension d to a lower dimension d′, we can see that the fol-
lowing probabilistic bounds hold for similar/dissimilar items
falling into same bucket :

P(similar items falling in same bucket) ≥ Pd′
1

P(dissimilar items falling in same bucket) ≤ Pd′
2 (2)

Given the background on LSH, we now adapt it to se-
lect a set of tagging action groups that are similar in their
tagging behavior based on locality sensitive hashing. Recall
that our input is the set G of n tagging action groups (i.e., n
d-dimensional tag signature vectors, where d is the cardinal-
ity of the global set of tag topics mentioned in Section 2.2)
using a pair-wise comparison function F ′′p (g1,g2,tags,

similarity) that operates on group tag signature vectors
in order to optimize tag similarity. Our expected result is a
set of k tagging action groups Gopt such that they have the
least average pair-wise distance between them

Note that, our LSH based algorithms works for Problems
1, 2 and 3 in Table 1 maximizing tag similarity. We first in-
troduce an algorithm that returns the set of tagging action
groups Gopt , 1 ≤ |Gopt | ≤ k having maximum similarity in
tagging behavior (Column O in Table 1) and then discuss ad-
ditional techniques to include the multiple hard constraints
into the solution (Column C in Table 1).

4.1 Maximizing Similarity based on LSH

Our LSH based algorithm SM-LSH deals with TagDM prob-
lem instances optimizing tag SiMilarity. The classical us-
age of LSH is to find the nearest neighbor(s) for a given
query item. However, in TagDM problems, there is no spe-
cific query item - instead, we want to identify a set of k tag-
ging action groups that have high pair-wise similarity over
their tagging behavior. We reconcile these two seemingly
different usages by exploiting the fact that given a bucket, all
points in it are highly likely to be similar. We employ LSH to
partition the tagging action groups such that similar groups
fall into the same bucket. The next step is to choose the best
set of tagging groups for a hash table. We identify the best k-
subset for each bucket and pick the best set over all buckets.
Different sets are comparable using the dual mining scor-
ing function. We repeat the process for each hash table and
finally choose the best set among all hash tables.
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One of the key requirement for good performance of
LSH is the careful selection of the family of hashing func-
tions. In SM-LSH, we use the LSH scheme proposed by
Charikar [7] which employs a family of hashing functions
based on cosine similarity. It is possible to utilize other dis-
tance measures such as Euclidean, Jaccard, Earth-Movers
etc. The only change involves how the hash functions are
chosen and how the probability values P1 and P2 are com-
puted. As discussed in Section 2.2, the cosine similarity be-
tween two group tag signature vectors is defined as the co-
sine of the angle between them and can be defined as:

cos(θ(Trep(gx),Trep(gy))) =
|Trep(gx).Trep(gy)|√
|Trep(gx)|.|Trep(gx)|

The algorithm computes a succinct hash signature of the
input set of n tagging action groups by computing d′ inde-
pendent dot products of each d-dimensional group tag signa-
ture vector Trep(gx), where gx ⊆ G with a random unit vec-
tor r and retaining the sign of the d′ resulting products. This
maps a higher d-dimensional vector to a lower d′-dimensional
vector (d′� d). Each entry of r is drawn from a 1-dimensional
Normal distribution N(0,1) with zero mean and unit vari-
ance. Alternatively, we can generate a spherically symmet-
ric random vector r of unit length from the d-dimensional
space. The LSH function for cosine similarity for our prob-
lem is given by the following Theorem 2 adapted from [7]:

Theorem 2 Given a collection of n d-dimensional vectors
where each vector Trep(gx) corresponds to a gx ⊆ G, and a
random unit vector r drawn from a 1-dimensional Normal
distribution N(0,1), define the hash function hr as:

hr(Trep(gx)) =

{
1 i f r.Trep(gx)≥ 0
0 i f r.Trep(gx)< 0

Then for two arbitrary vectors Trep(gx) and Trep(gy) :

P[hr(Trep(gx)) = hr(Trep(gy))] = 1−
θ(Trep(gx),Trep(gy))

π

where θ(Trep(gx),Trep(gy)) is angle between two vectors.

The proof of the above Theorem 2 establishing that the
probability of a random hyperplane (defined by r to hash
input vectors) separating two vectors is directly proportional
to the angle between the two vectors follows from Goemans
et. al’s theorem [13]. Any pair-wise dual mining function
for comparing tag signatures must satisfy such properties.
We represent the d′-dimensional-bit LSH function as:

g(Trep(gx)) = [hr1(Trep(gx)), . . . ,hrd′(Trep(gx))]
T

For d′ LSH functions and from (2), the probability of
similar tag signature vectors gx and gy falling into the same
bucket for all d′ hash functions is at least :

P(g(Trep(gx)) = g(Trep(gy)))≥
(

1−
θ(Trep(gx),Trep(gy))

π

)d′

Now, each input vector is entered into the l hash ta-
bles indexed by independently constructed hash functions
g1(Trep(gx)), . . . , gl(Trep(gx)). Using this LSH scheme, we
hash the tag vectors to l different d′-dimensional hash signa-
tures(or, buckets). The total number of possible hash signa-
tures in each of the l lower dimensional space is 2d′ . How-
ever, the maximum bound on the number of buckets in each
of the lower dimensional space is n.

While LSH is generally used to find the nearest neigh-
bors for new items, we take the novel approach of finding
the right bucket to output as result of our problem based on
checking for the number of tagging action groups in result
set and ranking by scoring function. For each of the l hash
tables, we first check for satisfiability of 1 ≤ |Gopt | ≤ k in
each bucket and then rank the buckets based on the scoring
function in order to determine the result set of tagging action
groups Gopt with maximum similarity.

Theorem 3 Given a collection of n d-dimensional tag sig-
nature vectors where each pair of vectors Trep(gx) and Trep(gy)

corresponds to a gx,gy ⊆ G, the probability of finding result
set Gopt of k most similar vectors by SM-LSH is bounded by:

P(Gopt)≥ max

(
0,1− ∑

gx,gy∈Gopt

[
1−
(

1−
θ(Trep(gx),Trep(gy))

π

)d′
])

Proof: The probability of finding the set of tagging action
groups Gopt , 1 ≤ |Gopt | ≤ k having maximum similarity in
tagging behavior, P(Gopt):
= 1 - P(one of kC2 vector pair belongs to different buckets)
≥ 1 - ∑gx,gy∈Gopt P(Trep(gx),Trep(gy) in different buckets)
≥ 1 - ∑gx,gy∈Gopt [ 1 - P(Trep(gx),Trep(gy) in same buckets) ]

≥ 1 - ∑gx,gy∈Gopt

[
1−
(

1− θ(Trep(gx),Trep(gy))
π

)d′
]

ut

Algorithm 1 is the pseudo code of our SM-LSH algo-
rithm. This algorithm may return null result if post-processing
of all l hash tables yields no bucket satisfying 1≤ |Gopt | ≤ k.
In other words, there are no set of tagging action groups in
any bucket such that they satisfy the constraints (size of set,
coverage, user/item overlap) of our problem instance. This
motivates us to tune SM-LSH by iterative relaxation that
varies the input parameter d′ in each iteration. Decreasing
the parameter d′ increases the expected number of tagging
action groups hashing into a bucket, thereby increasing the
chances of our algorithm finding the result set. We start with
an initial value of d′ and reduce the parameter systemati-
cally (in a manner similar to performing a binary search)
such that we find a value of d′ such that it has some buckets
that contain more than k tagging action groups satisfying the
constraints. However, the expected size of bucket must not
be too high as that will make the problem of finding the best
k-subset of tagging action groups in a bucket very expensive.
(please see Subsection 4.4 for additional discussion).
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Algorithm 1 SM-LSH (G, O, k, d′, l): Gopt

//Main Algorithm
1: min = 1
2: max = d′

3: TU
rep ← {}; T I

rep ← {}
4: if C1.m = similarity then
5: TU

rep ← Unarize user vector
6: end if
7: if C2.m = similarity then
8: T I

rep ← Unarize item vector
9: end if

10: for x = 1 to n do
11: Trep(gx)← TU

rep(gx) + T I
rep(gx) + Trep(gx)

12: end for
13: repeat
14: Buckets← LSH(G, d′, l)
15: Gopt ←MAX(Rank(Buckets, k))
16: if Gopt = null then
17: max = d′−1
18: else
19: min = d′+1
20: end if
21: d′ = (min+max)/2
22: until (min > max) or (Gopt 6= null)
23: return Gopt

//LSH(G, d′, l): Buckets
1: for z = 1 to l do
2: for x = 1 to n do
3: for y = 1 to d′ do
4: Randomly choose r from d-dimensional Normal distribu-

tion N(0, 1)
5: if r.Trep(gx)≥ 0 then
6: hry(Trep(gx))← 1
7: else
8: hry(Trep(gx))← 0
9: end if

10: gz(Trep(gx)) = [hr1(Trep(gx)), ..,hrd′ (Trep(gx))]
T

11: end for
12: end for
13: end for
14: Buckets← g1(Trep(gx))∪·· ·∪gl(Trep(gx))
15: return Buckets

Example 1 Let us consider one of the Problems 1, 2, or 3
in Table 1 where the objective is to optimize tag similar-
ity. Consider a dataset where the input G of tagging action
groups consists of n = 5 3-dimensional tag signature vec-
tors. Let the group tag vectors be Trep(g1) = [0.6,0.2,0.2],
Trep(g2)= [0.1,0.7,0.1], Trep(g3)= [0.1,0.1,0.8], Trep(g4)=

[0.6,0.4,0.0] and Trep(g5) = [0.4,0.2,0.4]. The tagging vec-
tors can be obtained via multiple methods including tf-idf or
LDA. The dimensionality d = 3 of the vectors correspond
to the tag topics under consideration, and can be words
like love, oscar winning, gory, etc. The tagging action
groups are user-describable. Specifically, let the descrip-
tions of g1 be {gender = female}, g2 be {state = texas},
g3 be {state = california}, g4 be {gender = female,
state = texas} and g5 be {gender = female, state

= california} respectively. The objective is to identify the

result set Gopt of k = 2 groups having maximum similarity
in tagging behavior for the dataset under consideration. The
naive way (Exact Algorithm) would perform

(n
k

)
=
(5

2

)
= 10

comparisons to find the best pair, which is not always a fea-
sible solution. Our SM-LSH algorithm helps us retrieve Gopt

in the following manner.
Let the LSH parameters be d′ = 2 and l = 1; let the ran-

domly chosen vectors be r1 = [+1,−1,0], r2= [−1,−1,+1].
We reduce the dimensionality of each vector from d = 3 to
d′ = 2. For a vector Trep(gx), the first component of its cor-
responding lower dimensional representation is r1.Trep(gx),
while its second component is r2.Trep(gx). If a component
is non negative, we set it to 1 else to 0. As an example,
given vector Trep(g1), its lower dimensional representation
is [Trep(g1) . r1,Trep(g1) . r2] = [0.426,−0.52]. This is then
transformed to [1,0]. Repeating the same procedure for the
other vectors, we get their lower dimensional representa-
tions as: g2 = [0,0], g3 = [1,1], g4 = [1,0] and g5 = [1,0].
Out of the 2d′ = 22 = 4 possible buckets, we have 3 non
empty buckets. SM-LSH finds out that the only bucket with at
least k = 2 elements is [1,0]. This bucket, incidentally, also
contains the optimal solution. This is identified by finding
the best k = 2 tagging action groups in the set {g1,g4,g5}
by enumerating all possible pairs. The result Gopt = {g4,g5}
can be interpreted as: female users in the dataset under con-
sideration have similar tagging behavior.

Note that, we have considered one of the Problems 1, 2,
or 3 in Table 1 in our running example. Each of the problems
could have multiple hard constraints. Techniques to refine
the SM-LSH results for satisfiability of the hard constraints
are discussed later in Sections 4.2 and 4.3.

Complexity Analysis: For each round, the pre-processing
of locality sensitive hashing time is bounded by O(nld).
The number of rounds is logarithmic in d in the worst case.
The time complexity for post-processing phase where the
buckets are ordered for ranking by scoring function depends
on the maximum number of non empty buckets B for any
hash table and the size of the largest bucket nb resulting in
O
(
Bl
(nb

k

))
. Notice that

(nb
k

)
gives the complexity of finding

the best k-subset in a bucket. The space complexity of the al-
gorithm is O(nl) since there are l hash tables and each table
has at most n buckets.

SM-LSH is a fast algorithm with interesting probabilis-
tic guarantees and is advantageous, especially for high-
dimensional input vectors. However, the hard constraints along
user and item dimensions are not leveraged in the optimiza-
tion solution so far. Next, we discuss approaches for accom-
modating the multiple hard constraints into the solution.

4.2 Dealing with Constraints: Filtering

A straightforward method of refining the result set of SM-
LSH for satisfiability of all the hard constraints in TagDM
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problem instances is post-processing or Filtering. We refer
to this algorithm as SM-LSH-Fi. For each of the l hash ta-
bles, we first check for satisfiability of the hard constraints
in each bucket and then rank the buckets (satisfying hard
constraints) according to the scoring function in order to
determine the result set of tagging action groups Gapp (We
represent Gopt as Gapp since LSH based technique now per-
form approximate nearest neighbor search) with maximum
similarity. Such post-processing of buckets for satisfiabil-
ity of hard constraints may also return null results, if post-
processing of hash tables yields no bucket satisfying all the
hard constraints. Therefore, we propose a smarter method
that folds the hard constraints concerning similarity as part
of vectors in high-dimensional space, thereby increasing the
chances of similar groups hashing into the same bucket.

4.3 Dealing with Constraints: Folding

Problems 2 and 3 in Table 1 has two out of the three tag-
ging action components to be mined for similarity. In order
to explore the main idea of LSH, we Fold the hard con-
straints maximizing similarity as soft constraints into our
SM-LSH algorithm in order to hash similar input tagging ac-
tion groups (similar with respect to group tag signature vec-
tor and user and/or item attributes) into the same bucket with
high probability. We refer to this algorithm as SM-LSH-Fo.
We fold the user or item similarity hard constraints in Prob-
lems 2 and 3 respectively into the optimization goal and ap-
ply our algorithm, so that tagging action groups with similar
user attributes or similar item attributes, and similar group
tag signature vectors hash to the same bucket. For each tag-
ging action group gx ⊆ G, we represent the categorical user
attributes or item attributes as a boolean vector and concate-
nate it with Trep(gx). We map n vectors from a higher (d
+ ∑

|SU |
i=1 ∑

|ai|
j=1 |ai = v j|) dimensional space for users (replace

|SU | with |SI | for items) to a lower d′ dimensional space.
Similar to Algorithm 1, we consider l LSH hash functions
and then post-process the buckets for satisfiability of the re-
maining constraints in order to retrieve the final result set
of tagging action groups Gapp with maximum optimization
score. Problem 1 in Table 1 has all three tagging action com-
ponents set to similarity. In this case, we build one long vec-
tor for each tagging action group gx ⊆ G by concatenating
boolean vector corresponding to categorical user attributes,
boolean vector corresponding to categorical item attributes
and numeric tag topic signature vector Trep(gx). The dimen-
sionality of the high-dimensional space for Problem 1 is d +
∑

SU
i=1 ∑

|ai|
j=1 |ai = v j| + ∑

SI
i=1 ∑

|ai|
j=1 |ai = v j|.

4.4 Practical Considerations

While Theorem 3 establishes the theoretical probabilistic
bound of finding the optimal result set, there are a number
of practical issues to consider.

The first issue is how to set the initial values for param-
eters d′ and l. Ideally, the parameters must result in buckets
such that their expected size be k. This will ensure that all
the tagging action groups in the bucket becomes a candidate
output set. We can use Theorem 1 in [12] to set the initial
values to be

d′ = log1/P2

n
k

l =
(n

k

)ρ

where ρ = ln1/P1
ln1/P2

. However, there are a number of work in-
cluding [42,10,33] on LSH-parameter tuning that can be
used as well.

An important issue to notice is that LSH is a Monte
Carlo randomized algorithm. In other words, while the prob-
ability of finding the optimal solution is reasonable, it is pos-
sible that we did not find in our first attempt. There are two
possible ways to boost the success probability. First, we can
increase the number of trials of our algorithm but keeping
the same values for parameters d′ and l. An alternate ap-
proach, which we have used in our algorithm, is to reduce
the number of hash functions d′. In both cases, each round
of our algorithms are independent. In other words, the hash
functions are chosen from scratch. We then identify the best
set of tagging action groups for each round and choose the
best over all rounds.

Consider the approach where we change the parame-
ter d′. Intuitively, as the value of d′ decreases, the expected
number of input items that fall into any bucket increases. In
the extreme case, for d′ = 1, we expect half the points to fall
in the bucket hr(.) = 0 and half in hr(.) = 1. This particular
design choice is appealing as the expected size of buckets
increases, the chances of the optimal set of tagging action
groups to belong to the same bucket also increases.

The next design choice involves how to choose the di-
mensionality d′′ for the next iteration. For example, we can
decrement the current number of hash functions to project
to the next lower dimension. i.e. d′′ = d′− 1. Alternatively,
we can be more aggressive and reduce the dimensionality
by some constance factor (such as d′′ = d′

2 ). There is a cost-
benefit tradeoff here. On one hand, when the dimensional-
ity is cut by half, the expected number of items falling into
a bucket dramatically increases. However, there is a corre-
sponding increase in the probability of finding the optimal
set of points also. We choose an approach that balances run-
time vs success probability. If we have not identified enough
candidates for a given value of d′, the value for next invoca-
tion is chosen as d′′ = d′

2 . However, if the resulting bucket
sizes are too large for d′′ (thereby finding the best subset of k
points in a bucket would be very expensive), we then choose
a new dimension half-way between d′′ and d′. In the worst
case, the value of d′ goes all the way to 1 and our algorithm
degenerates to Exact. We note that there exist a number of
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theoretical and empirical work on tuning LSH parameters.
The most common techniques to handle failure (in our case,
it is the lack of buckets with atleast k tagging action groups
in it) are reducing the dimension [42,10,33,25], choosing
the best parameters based on their performance over differ-
ent samples over dataset[3] or based on their distance pro-
files [42] and finally multiprobing [31]. We chose the ap-
proach of reducing the dimension as it is the most intuitive
and requires the least amount of additional information.

Both SM-LSH-Fi and SM-LSH-Fo are efficient algo-
rithms for solving TagDM similarity maximization problem
instances and readily out-performs the baseline Exact, as
shown in Section 7. However, there are other instantiations
namely, Problems 4, 5 and 6 in Table 1 which concern tag di-
versity maximization. Since it is non-obvious how the hash
function may be inversed to account for dissimilarity while
preserving the properties of LSH, we develop another set of
algorithms (less efficient than LSH based, as per complexity
analysis) in Section 5 for diversity problems.

5 FDP Based Algorithms

The second of our algorithmic solutions borrows ideas from
methods employed in computational geometry, which model
data objects as points in high dimensional space and deter-
mine a subset of points optimizing some objective function.
Such geometric problem examples include clustering a set
of points in euclidean space so as to minimize the maximum
intercluster distance, computing the kth smallest or largest
inter-point distance for a finite set of points in euclidean
space, etc. Since we consider tagging action groups as tag
signature vectors, and since the cardinality of the global set
of topics (that, in turn, determines the size of each vector)
is often high, computational geometry based approach is an
intuitive choice to pursue.

We focus on a specific geometric problem, namely the
facility dispersion problem (FDP), which is analogous to
our TagDM problem instances, finding the tagging action
groups maximizing the mining criterion. The facility dis-
persion problem deals with the location of facilities on a
network in order to maximize distances between facilities,
minimize transportation costs, avoid placing hazardous ma-
terials near housing, outperform competitors’ facilities, etc.
We consider the problem variant in Ravi et al.’s paper [38]
that maximizes some function of the distances between fa-
cilities. The optimality criteria considered in the paper are
MAX-MIN (i.e., maximize the minimum distance between
a pair of facilities) and MAX-AVG (i.e., maximize the aver-
age distance between a pair of facilities). Under either crite-
rion, the problem is known to be NP-hard by reduction from
the Set Cover problem, even when the distances satisfy the
triangle inequality [11]. The authors present an approxima-
tion algorithm for the MAX-AVG dispersion problem, that

provides a performance guarantee of 4. The algorithm ini-
tializes a pair of nodes (i.e., facilities) which are joined by
an edge of maximum weight and adds a node in each sub-
sequent iteration which has the maximum distance to the
nodes already selected.

The facility dispersion problem solution provides an ap-
proach to determine a set of tagging actions groups that have
maximum average pair-wise distance, i.e., that are dissimi-
lar in their tagging behavior. We consider each of the in-
put n tagging action groups as d-dimensional tag signature
vector in a unit hypercube and intend to identify k vectors
with maximum average pair-wise distance between them.
We compare the input set G of n tagging action groups using
a pair-wise comparison function F ′′p (g1,g2,tags,diversity)
that operates on tagging action group signature vectors; and
return the set of tagging groups≤ k having maximum diver-
sity in tagging behavior.

Our FDP based algorithms work for Problems 4, 5 and
6 in Table 1 maximizing tag diversity. We first introduce an
algorithm that returns the groups having maximum diversity
in tagging behavior (Column O in Table 1) and then discuss
additional techniques to handle the multiple hard constraints
in the solution (Column C in Table 1).

5.1 Maximizing Diversity based on FDP

Our FDP based algorithm DV-FDP handles TagDM prob-
lem instances optimizing tag DiVersity. Given an input set
G of n tagging action groups, each having a numeric tag
signature vector Trep(gx), where gx ⊆ G, we build the re-
sult set Gapp (we represent the result set as Gapp since the
technique returns approximate solution) by adding a tagging
action group in each iteration which has the maximum dis-
tance to the groups already included in the result set. Again,
we use cosine similarity measure between two tag signature
vectors for determining the distance since the distance met-
ric hold triangular inequality property. Thus, our DV-FDP
attempts to find one tight set of k groups with maximum av-
erage pair-wise distance between them. The approximation
bounds for this algorithm follows from [38] :

Theorem 4 Let I be an instance of the TagDM problem max-
imizing the mining criterion with k ≥ 2 and no other hard
constraints, where the collection of n d-dimensional vectors
are in a unit hypercube satisfying the triangle inequality. Let
Gopt and Gapp denote respectively the optimal set of k tag-
ging action groups returned by Exact and DV-FDP algo-
rithms. Then Gopt /Gapp ≤ 4.

Algorithm 2 is the pseudo-code of our DV-FDP algo-
rithm. Once the n× n distance matrix SG is built using the
cosine distance function, the implementation exhaustively
scans S for determining the best add operation in each of the
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Algorithm 2 DV-FDP (G, O, k): Gapp

//Main Algorithm
1: SG← Compute n×n Distance Matrix(G)
2: {gx, Ix, gy, Iy }←MAX(SG)
3: A← [gx,gy]
4: while A 6= k do
5: gz ← Σ{z′∈[A],z∈[G−A]}MAX(SG−A)
6: A← [A,gz]
7: end while
8: Gapp ← A
9: return Gapp

subsequent iterations. If A represents the result set, the ob-
jective is to find an entry from G−A to add to A, such that
its total sum of weight to a node in A is maximum.

Example 2 Let us consider one of the Problems 4, 5, or 6 in
Table 1 where the objective is to optimize tag diversity. Let
us consider the same dataset and input set G of tagging ac-
tion groups, as in Example 1. The objective is to identify the
result set Gapp of k = 3 groups having maximum diversity
in tagging behavior. Using the cosine distance (computed as
1.0 - cosine similarity score for capturing diversity) as our
distance measure, DV-FDP functions as follows. The first
step is to compute the matrix SG, which is shown in Table 2.
The pair of tagging action groups with highest distance be-

Table 2 Distance matrix SG

g1 g2 g3 g4 g5
g1 0.00 0.54 0.55 0.08 0.10
g2 0.54 0.00 0.72 0.34 0.49
g3 0.55 0.72 0.00 0.83 0.22
g4 0.08 0.34 0.83 0.00 0.26
g5 0.10 0.49 0.22 0.26 0.00

tween them are g3 and g4. These form our initial approxi-
mate group Gapp = {g3, g4}. Next, we find the tagging ac-
tion group that has the largest aggregate distance from g3
and g4. The tagging action group has an aggregate distance
of 0.55+ 0.08 = 0.63 from the set g3,g4. The correspond-
ing values for g2 and g5 are 1.06 and 0.48 respectively. This
means that g2 becomes the next member of the output group
and the algorithm returns Gapp = {g2,g3,g4}. Observe that
in this example, the approximate and optimal answers hap-
pen to be identical, which may not be the case in general.
The result Gapp = {g2,g3,g4} can be interpreted as: users
in California and Texas have diverse tagging behavior for
the dataset under consideration.

Note that, we have considered one of the Problems 4,
5, or 6 in Table 1 in our running example. Each of the prob-
lems have multiple hard constraints. Techniques to refine the
DV-FDP results for satisfiability of the hard constraints are
discussed later in Sections 5.2 and 5.3.

Complexity Analysis: The complexity of the implementa-
tion of the DV-FDP algorithm is O(n2 +nk), i.e., O(n2) due

to operations around the n×n distance matrix SG. The space
complexity of the algorithm is O(n2). Note that, our LSH
based algorithms have better space and time complexity than
FDP based algorithms. However, experiments in Section 7
show comparable execution time for LSH and FDP based
algorithms in a practical setting.

Like SM-LSH, this algorithm does not leverage the hard
constraints along user and item dimensions into the opti-
mization solution, as well. We now illustrate approaches for
including the multiple hard constraints into the solution.

5.2 Dealing with Constraints: Filtering

Similar to SM-LSH-Fi, a straightforward method of refining
the result set of groups for satisfiability of all the hard con-
straints in TagDM problem instances is post-processing or
Filtering. We refer to this algorithm as DV-FDP-Fi. Once
the result set Gapp of k groups is identified, we post-process
it to retrieve the relevant answer set of tagging action groups,
satisfying all the hard constraints. Now, such post-processing
of the result set for satisfiability of hard constraints may re-
turn null results frequently and hence we propose a smarter
algorithm that folds some of the hard constraints into DV-
FDP, thereby decreasing the chances of hitting a null result.

5.3 Dealing with Constraints: Folding

In contrast to general DV-FDP algorithm whose objective
is to add groups to the result set greedily so that average
pair-wise distance is maximized, we want to retrieve the set
in each iteration whose members, besides being dissimilar,
satisfy many other constraints. In DV-FDP, the greedy add
operation in Line 5 of Algorithm 2 maximizes tag diversity.
If the algorithm includes a bad tagging action group to the
result set in an iteration, the algorithm may return null re-
sult or an inferior approximate result, after final filtering of
the result set for hard constraint satisfiability. Therefore, we
propose our second approach in which hard constraints max-
imizing diversity are Folded into the add operation. We refer
to this algorithm as DV-FDP-Fo. During each new group ad-
dition to the result set, we not only check for the pair with
maximum distance, but also check for the satisfiability of
the diversity maximization hard constraints on user and item
dimension, if any. The algorithm terminates when the num-
ber of groups in result set equals k. Once the result set of
k groups is identified, we post-process the set for satisfia-
bility of the similarity maximization hard constraint(s) and
support constraint, in order to retrieve the answer result of
tagging action groups Gapp′ .

Complexity Analysis: The time and space complexity of
the algorithm continues to be O(n2) in the worst case.
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6 Extensions to TagDM Framework

The TagDM framework in Definition 5 consists of tagging
behavior dimensions (i.e., users, items and tags), a set of
constraints and optimization goal, and the mining function
for measuring similarity and diversity. In this section, we
describe natural extensions to TagDM framework that allow
it to be more expressive, and provide additional algorithmic
solutions. Our extensions are two fold: first, we allow the in-
clusion of conditions over the dimension(s) in the optimiza-
tion goal; second, we generalize the mining function from
pair-wise aggregation to arbitrary dual mining functions.

6.1 Conditions in optimization goal: HAC Based Algorithm

Recall that TagDM framework handles a set of social tag-
ging behavior analysis tasks that optimizes one or more of
the tagging action components (i.e., users, items, tags), and
adds to constraints components which are not included in
the optimization goal. However, the type of optimization
goal allowed in the TagDM framework is highly specific:
it operates on one or more dimensions and the target func-
tion maximizes a similarity or diversity score over the tag-
ging action groups. In a number of practical cases, the user
may be interested in adding few other conditions over di-
mensions that are not easily expressed in terms of similarity
or diversity. For example, a user can be interested in finding
tagging action groups that maximize a tag diversity measure
and satisfy user and item similarity constraints, such that the
tagging groups have frequent taggers. Or, a user can be in-
terested in finding groups that maximize a combination of
tag diversity and user diversity measures and satisfy an item
similarity constraint such that the groups have median user
age of 30. In other words, the analysis task may require us
to optimize a dimension along with the condition that the
dimension satisfy some property over its distribution.

We can see that it is not easy to extend the previously
described algorithms to handle arbitrary conditions. First,
the hash functions used in LSH do not accommodate any
mechanism for additional conditions. The algorithm SM-
LSH-Fo was possible because the constraints F1,F2 and F3
were based on similarity. However, if they had been based
on other properties such as frequency, the folding technique
quickly proves inadequate. While the FDP based algorithms
can fold the constraints, it is tied to maximizing the average
pair-wise distance between the facilities (i.e., the groups).
Hence, we need a general algorithm that can seamlessly
handle arbitrary conditions over dimensions in optimization
goal for both similarity and diversity mining problems.

We propose an algorithm based on hierarchical agglom-
erative clustering (HAC) that has the following advantages:

– It can handle both similarity and diversity maximization
problems, unlike LSH and FDP based which can handle
similarity and diversity respectively.

– It is capable of similarity/diversity maximization along
with some property of the distribution associated with
the target optimization function, while LSH and FDP
based cannot. In addition, by changing how the clusters
are merged, it can handle arbitrary objective functions.

Hierarchical agglomerative clustering is a popular bottom-
up clustering technique in which each data observation is
treated as a singleton cluster at the outset, and then succes-
sively merged pair-wise until all clusters have been merged
into a single cluster containing all data observations [34].
This unsupervised technique outputs an informative tree-
like structure (known as dendogram) efficiently. It takes a
symmetric matrix of distances between data observations
as input, thereby helping us accommodate both tag similar-
ity and tag diversity maximization problems. The merges in
each iteration are determined greedily by searching the dis-
tance matrix for a pair separated by smallest distance (in
case of similarity maximization) and by largest distance (in
case of diversity maximization.)

We particularly consider the average linkage HAC vari-
ant which merges pair of clusters with the minimum (or
maximum) average distance from any member of one clus-
ter to any member of the other cluster, since this function is
equivalent to our Pair-Wise Aggregation Dual Mining Func-
tion Fpa. For the problem instantiations concerning tag sim-
ilarity or diversity maximization, we need to compare the
input set G of n tagging action groups using a pair-wise com-
parison function F ′′p (g1,g2,tags,m), m ∈ {similarity,
diversity} that operates on Trep(gx), where gx ⊆ G. Once
again, the result set of tagging action groups with maximum
tag similarity or diversity, can be retrieved by determining
the k vectors (from n d-dimensional tag signature vectors)
with minimum or maximum average pair-wise distance be-
tween them respectively. Our HAC based algorithm is often
less efficient than LSH and FDP based algorithms as we see
in Section 7, but are capable of handling a wide variety of
complex mining problems which LSH and FDP based tech-
niques cannot.

We adopt the HAC technique in the following way to
handle our problem instances. Given an input set G of n tag-
ging action groups, each having a numeric tag signature vec-
tor Trep(gx), where gx⊆G, we employ average linkage HAC
to merge clusters in each iteration. Once the dendogram op-
timizing tag similarity or diversity is generated, we post-
process the dendogram in a top-down manner to retrieve the
result set of tagging action groups Gapp (We represent Gopt

as Gapp since HAC return approximate solutions) satisfying
the hard constraints. Note that, the handling of the additional
property, i.e., satisfiability of condition in the optimization
goal is conducted during the merging of clusters in each iter-
ation. In other words, we want to construct a clustering such
that members of the cluster, besides being similar (or dis-
similar), satisfy additional properties and many constraints.
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Thus, while traditional HAC algorithms are used for cluster-
ing a dataset into different partitions, our algorithm attempts
to find one tight small group satisfying the constraints and
maximizing the conditional mining criterion.

In our HAC based algorithm optimizing tag similarity or
diversity, the target function conditions, denoted by FC(Gapp,

tags), and multiple hard constraints are folded into the merge
operation. During each merge operation, we not only check
for the pair with maximum (or, minimum) average pair-wise
cosine similarity score, but also check for the satisfiability
of the condition along the tagging dimension, as well as
hard constraints 1 ≤ |Gapp| ≤ k, F ′P(Gx,Gy,users,m) ≥ q
and F ′P(Gx,Gy,items,m) ≥ r, where Gx, Gy are intermediate
clusters, each consisting of a set of tagging action groups.
The algorithm terminates when SupportGapp

G ≥ p, often with-
out having to build the complete dendogram.

Algorithm 3 is the pseudo-code of the HAC based algo-
rithm with average-link based agglomerative method. The
naive implementation of HAC algorithm is O(n3) since it
will exhaustively scan the n× n distance matrix S for de-
termining the best merge in each of the (n− 1) iterations.
However, if the function to compute the pair-wise distance
F ′′p (g1,g2,tags,m) is cosine similarity, then in conjunction
with heap based priority queues which have O(logn) time
for inserts and deletes, the algorithm will have a complexity
of O(n2 logn). In Algorithm 3, the rows of the n× n dis-
tance matrix S are sorted based on distance in the priority
queues P. P[x].MAX() or P[x].MIN() returns the cluster in
P[x] that currently has the highest similarity or dissimilar-
ity with Gx, where Gx is the intermediate cluster formed in
the xth iteration. Gx is chosen as the representative of the
cluster obtained by merging Gx and Gy. After each merge
operation, the priority queues maintained for each cluster
are updated. The cluster similarity or dissimilarity computa-
tion takes constant time if vector sums ∑gx∈Gx Trep(gx) and
∑gy∈Gy Trep(gy) are available, where Gx and Gy are interme-
diate clusters being selected for merging. This follows from
the following Theorem 5 [32]:

Theorem 5 The group average of the merged clusters for
cosine similarity in average linkage hierarchical agglomer-
ative clustering is given by :

F ′′P ({Gx,Gy},tags,m)

=
1

(N)(N−1) ∑
gx∈Gx

∑
gy∈Gy;gx 6=gy

Trep(gx).Trep(gy)

=
1

(N)(N−1)
[( ∑

gx∈Gx

Trep(gx)+ ∑
gy∈Gx

Trep(gy))
2− (N)]

where N = ni + n j, Gx and Gy are intermediate clusters be-
ing selected for merging, Trep(gx) and Trep(gy) are length
normalized tag signature vectors of corresponding to tag-
ging groups gx and gy respectively, . denotes the dot prod-

Algorithm 3 HAC based (G, O, C, k, p): Gapp

//Main Algorithm
1: S, I, P←Compute n×n Distance Matrix(G)
2: A← []; i← 1; Gapp ← {}
3: while SupportGapp

G ≥ p do
4: Gx ← argmax{i:I[i]=1} P[i].m().distance //Using cosine

//m() ∈ {MAX(),MIN()} for m ∈ {similarity,diversity}
5: Gy ← f unction( P[i].m().index, FC(Gapp,tags), |{Gx,Gy}| ≤

k, F ′P({Gx,Gy},users,m)≥ q, F ′P({Gx,Gy},items,m)≥ r)
6: A.append (〈Gx,Gy〉)
7: S, I, P← Update Priority Queue(C, S, P, x, y)
8: i← i+1
9: end while

10: Gapp ← Post-process(A, k, p, C)
11: return Gapp

//Compute n×n Distance Matrix(G): S, I, P
1: for x = 1 to n do
2: for y = 1 to n do
3: S[x][y].distance← Trep(gx).Trep(gy)
4: S[x][y].index← i
5: end for
6: I[x]← 1
7: P[x]← priority queue for S[x] sorted on cosine similarity
8: P[x].delete(S[x][x])
9: end for

10: return S, I, P

//Update Priority Queue(S, I, P, x, y): S, I, P
1: I[y]← 0
2: P[x]← []
3: for z do
4: if I[z] = 1∧ z 6= x then
5: P[z].delete(C[z][x])
6: P[z].delete(C[z][y])
7: S[z][x].distance← F({G x,gy}, tags,m)
8: P[z].insert(C[z][x]) //G x is intermediate cluster of gz and gx
9: S[x][z].distance← F({G x,gy}, tags,m)

10: P[x].insert(S[x][z])
11: end if
12: end for
13: return S, I, P

uct, nx and ny are the number of groups in Gx and Gy respec-
tively. Therefore, the distributivity of the dot product with
respect to vector addition aids constant time cluster merge
condition computation. Note that, when the TagDM prob-
lem instance optimizes similarity in tagging behavior, the al-
gorithm merges two most similar clusters having maximum
average pair-wise cosine similarity score; when the problem
instance optimizes diversity in tagging behavior, it merges
two most dissimilar clusters having minimum average pair-
wise cosine similarity score.

Example 3 Let us re-examine the problem of identifying the
most similar set of tagging action groups, as in Example 1.
We consider the same dataset and input set G of tagging ac-
tion groups. Let us re-define the optimization goal as: iden-
tify the result set Gapp of k = 3 groups having maximum
similarity in tagging behavior such that majority (i.e., more
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than 50%) of the users in the tagging groups are frequent
taggers (i.e., have tagged at least 25 items, say). Using co-
sine similarity as the distance measure, we first build the
distance matrix S which is shown in Table 3.
Table 3 Distance matrix SG

g1 g2 g3 g4 g5
g1 1.00 0.46 0.45 0.92 0.90
g2 0.46 1.00 0.28 0.66 0.51
g3 0.45 0.28 1.00 0.17 0.78
g4 0.92 0.66 0.17 1.00 0.74
g5 0.90 0.51 0.78 0.74 1.00

The pair of tagging action groups with highest similar-
ity between them are g1 and g4. If the multiple hard con-
straints in the problem (such as constraints along user and
item dimensions, etc.) as well as the additional condition
in the optimization goal is satisfied, we merge these two
groups to a single cluster G1. If the constraints and con-
ditions are not taken care of, we proceed with the second
most similar pair of tagging action groups, namely g1 and
g5. Assume, we merge g1 and g4 to G1. Next, we update
the similarity between the remaining groups g2,g3 and g5
with G1 using the average link similarity. In other words,
similarity between {g1,g4} and say g2 is computed as the
average of similarities between pairs (g1,g2) and (g4,g2).
Using the updated matrix, we observe that the cluster G1
= {g1,g4} and tagging action group g5 have the highest
similarity. We check for the satisfiability of the conditions
and constraints, and find out that {g1,g4,g5} do not satisfy
the frequent tagger condition in the optimization goal. That
is, less than 50% of users belonging to the set {g1,g4,g5}
are frequent taggers. Hence, we do not proceed with this
merge operation and move to the second best merge option
that satisfies the frequent tagger condition and all the hard
constraints - we merge the cluster G1 = {g1,g4} and tag-
ging action group g2 (say). The merged cluster G2 has k = 3
tagging action groups, and also satisfies the support con-
dition (say). Hence, we terminate our algorithm and return
the set Gapp = {g1,g2,g4} as the solution. The result Gapp

can be interpreted as: female users in Texas are frequent
taggers and have similar tagging behavior for the dataset
under consideration.

Complexity Analysis: The complexity of the efficient im-
plementation of the HAC based algorithm is O(n2 logn). A
priority queue requires O(logn) time for inserts and deletes,
resulting in O(n logn) time for n priority queues as opposed
to O(n2) distance matrix update time in naive implementa-
tion.

6.2 General dual mining functions: HC Based Algorithm

One aspect responsible for bringing in variations in TagDM
problem instances is which measure (similarity or diversity)

the user is interested in applying to which tagging compo-
nents (i.e, users, items, or tags). All the algorithmic solu-
tions proposed consider pair-wise aggregation dual mining
function in Function 4. However, a user may be interested in
more general mining measures which cannot be computed
over pairs of tagging action groups, as discussed in Sec-
tion 2.4. Transitioning from pair-wise to general dual min-
ing functions allows one to characterize holistic properties
that occur at the global level in the optimal set of groups in-
stead of simply aggregating local (and pair-wise) properties.
Every dual mining functions that the user may want to ex-
plore can be placed in the spectrum between local and global
properties. While evaluating holistic properties increases the
expressive power of the TagDM framework, they also neces-
sitate the development of generic algorithms that can handle
arbitrary dual mining functions. Specifically, without addi-
tional knowledge of dual mining function properties (such
as monotonicity, sub-modularity or even metric property),
it is hard to describe deterministic algorithms that have any
meaningful approximation guarantees. The Exact algorithm
needs to check an exponential number of combinations and
is simply not scalable.

We extend ideas from our earlier work [9] and propose
a hill-climbing (HC) based technique that is capable of han-
dling all the problem instances we have discussed so far
with general dual mining defined in Definition 6, instead of
pair-wise aggregation mining function with limited scope
defined in Definition 4. We build a lattice of all possible
tagging action groups (which are structurally describable by
user and/or item attributes), where the nodes correspond to
user describable and item describable groups and the edges
correspond to parent/child relationships. Note that the num-
ber of nodes in the lattice of TagDM framework is usually
higher than that in the lattice of MRI in [9], since the lat-
ter has either user-describable lattice (for item-based query)
or item-describable lattice (for user-based query). Also, the
scalar numeric rating values have been replaced with nu-
meric vectors in this framework. Our HC based algorithm is
advantageous over all the previously discussed algorithms in
the following ways:

– It can handle general dual mining measures for simi-
larity and diversity mining which LSH, FDP and HAC
based cannot handle. Therefore, this algorithm is capa-
ble of solving a wide range of analysis tasks that none of
the other three algorithms can.

– It can handle both similarity and diversity maximization
problems like HAC based, unlike LSH and FDP based
which can handle similarity and diversity respectively.

– It is also capable of similarity/diversity maximization
along with some condition in the optimization goal like
HAC based, while LSH and FDP based cannot.

A straightforward adoption of the random restart hill
climbing [43] technique involves the following steps: we
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Algorithm 4 HC based (G, O, C, k, p): Gapp

- Build lattice LT of all tagging action groups, as in [9].

//Main Algorithm
1: GC ← randomly select k groups/nodes from LT

2: if SupportGC
G ≥ p, FC(GC,tags), F ′p(g1,g2,users,m) ≥ q and

F ′p(g1,g2,items,m)≥ r then
3: C← satisfy-constraints(GC,LT )
4: end if
5: C← optimize-dual-mining-function(C,LT )
6: Gapp ← best C so far
7: return Gapp

// satisfy-constraints(GC,LT ): C
1: while true do
2: val← coverage(GC,LT )
3: for each group gi in GC , each neighbor g j of gi do
4: C′ ← GC−gi +g j

5: val′ ← SupportC′
G ≥ p

6: if val′ ≥ α , FC(C′,tags), F ′p(g1,g2,users,m) ≥ q and
F ′p(g1,g2,items,m)≥ r then

7: C←C′

8: return C′

9: end if
10: end for
11: end while

// optimize-dual-mining-function(C,LT ): C
1: while true do
2: val← F(C,LT ) // F is general dual mining function
3: C = /0
4: for each group gi in C, each neighbor g j of gi do
5: C′ ←C−gi +g j

6: if SupportC′
G ≥ p, FC(C′,tags), F ′p(g1,g2,users,m) ≥ q

and F ′p(g1,g2,items,m)≥ r then
7: add (C′,F(C,LT )) to C
8: end if
9: end for

10: let (C′m,val′m) ∈ C be the pair with minimum F
11: if val′m ≥ val then
12: return C // we have found the local minima
13: end if
14: C←C′m
15: end while

first randomly select a set of k tag signature vectors (cor-
responding to k tagging action groups) as the starting seed;
the process then continues by replacing one group in the cur-
rent set with one of its neighbors3 not in the set as long as
the substitution maximizes or minimizes the general dual
mining function; the algorithm stops when no improvements
can be made indicating a local optima has been reached.
The process is repeated with multiple diverse seed sets to
increase the probability of finding the global optima that
satisfies the conditions and constraints. However, this sim-
ple application of hill climbing does not suffice because of
the inclusion of constraints and/or conditions in the tasks.

3 Two tagging action groups are neighbors if they are directly con-
nected in the lattice.

For any given set of groups randomly chosen as the starting
set, the probability of it satisfying all the constraints is fairly
small, thereby necessitating a large number of restarts.

Therefore, we consider the Randomized Hill Exploration
Algorithm [9](RHE) which first initializes a randomly se-
lected set of k vectors as the starting set. However, instead
of immediately starting to improve the target function, it ex-
plores the hill to detect sets of k tagging vectors in the neigh-
borhood that satisfy the conditions and constraints. This new
set of k group tag signature vectors is then adopted as the
starting point for the tag similarity or diversity maximiza-
tion, with the added condition that an improvement is valid
only when the constraints and conditions hold.

The details of the algorithm are shown in Algorithm 4.
Intuitively, we begin with the group tagging vector lattice
constructed on LT . The algorithm starts by picking k random
groups in the lattice to form the initial seed set GC. For each
group gi in GC, we swap gi with each of its neighbors g j in
the lattice, while the other groups in GC remain fixed, to gen-
erate a new combination. The exploration phase continues
till it finds the best set of k tagging action groups that satis-
fies all the constraints and conditions. The resulting set then
acts as the initial condition for the second phase of the opti-
mization to maximize or minimize the general dual mining
function F measuring tag similarity or diversity. The con-
figuration that satisfies the constraints and conditions, and
incurs the optimum value of F is the best tagging behavior
explanation for the query.

Example 4 Once again, we re-examine the problem of iden-
tifying the most similar set of tagging action groups, as in
Example 1 and 3. We consider the same dataset and input
set G of tagging action groups. The objective is to identify
the result set Gapp of k = 3 groups having maximum similar-
ity in tagging behavior using the HC-based algorithm. Re-
call that, here we consider a general dual mining function,
defined in Definition 6, instead of the pair-wise aggregation
cosine similarity measure used in Examples 1, 2, and 3. The
tagging action groups are concisely represented as a lattice
LT , as shown in Figure 3. We can see that there are 3 tagging
action groups that can be described using a single attribute
and 2 that are described using two user attributes.

G e n d e r = F

G e n d e r = F ,  S t a t e = T X Gende r=F ,  S t a t e=CA

S t a t e = T X S t a t e = C A

Fig. 3 Lattice representation of tagging action groups for example

When the algorithm starts, it randomly picks 3 groups
from LT . Suppose, it picks the groups containing all female
users and the users from Texas and California, i.e., GC =
{g1,g2,g3}. Our algorithm explores the neighboring groups
for each of the candidates in GC. One of the candidates is g4,
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the set of female users from Texas. If G′C = {g1,g3,g4} im-
proves the aggregate score (measured by general dual min-
ing function) as compared to GC = {g1,g2,g3} while satis-
fying the multiple constraints and conditions, we update GC
to G′C. We explore the remaining neighbors (i.e., g5) and up-
date GC in a similar fashion. Suppose, GC = {g1,g3,g5} has
the highest aggregate score. When there are no more neigh-
bors that can increase the aggregate score, the algorithm
terminates since it has reached the local maxima. The result
Gapp = {g1,g3,g5} is returned, which can be interpreted as:
female users from California have similar tagging behavior.

Complexity Analysis: The worst case complexity of the hill
climbing based algorithm is exponential in the size of the
search space. The space complexity of the search space, i.e.,
the number of groups/nodes in the lattice, is a function of
the number of attribute values users and items take.

Discussion: Table 4 broadly summarizes our algorithmic
contributions for solving the TagDM problem instances in
the general TagDM framework and those in the extensions
of the TagDM framework.

Table 4 Summary of our Algorithmic Solutions. Column O.m lists the
optimization O mining criterion (m ∈ {similarity,diversity}),
column CO lists if Algorithm can handle condition(s) in op-
timization goal, column O.F lists the mining function (F ∈
{Fp(pairwise),F(general)}) that Algorithm can handle, and the final
column discusses how Algorithm handles hard constraints.

Algorithm O.m Co O.F Additional Techniques
LSH based similarity no Fp fold similarity and

filter diversity constraints
FDP based diversity no Fp fold diversity and

filter similarity constraints
HAC based similarity, yes Fp fold both similarity

diversity and diversity constraints
during merge

HC based similarity, yes Fp,F fold both similarity
diversity and diversity constraints

during exploration

7 Experiments

We conduct a comprehensive set of experiments for quanti-
tative (Section 7.1) and qualitative (Section 7.2) analysis of
our proposed algorithms for TagDM problem instances. Our
quantitative performance indicators are (a) efficiency of the
algorithms, and (b) analysis quality of the results produced.
The efficiency of our algorithms is measured by the over-
all response time, whereas the result quality is measured by
the average pair-wise distance between the k tagging action
group vectors returned by our algorithms. In order to demon-
strate that the tagging behavior analysis generated by our
approaches are interesting to end users, we conduct a user
study through Amazon Mechanical Turk. We also present
interesting case studies to show how results generated by
our algorithms for TagDM problem instances varies.

Data Set: We require dataset(s) that contains information
about a set of users tagging a set of items, where attributes
associated with users and attributes associated with items are
known. We use the MovieLens4 1M and 10M ratings dataset
for our evaluation purposes. The MovieLens 1M dataset con-
sists of 1 million ratings from 6000 users on 4000 movies
while the 10M version has 10 million ratings and 100,000
tagging actions applied to 10,000 movies by 72,000 users.
The titles of movies in MovieLens are matched with those
in the IMDB dataset5 to obtain movie attributes.

User Attributes: The 1M dataset has well-defined user at-
tributes but no tagging information, whereas the 10M dataset
has tagging information but no user attributes. Therefore, for
each user in the 1M dataset with a complete set of attributes,
we build her rating vector and compare it to the rating vec-
tors (if available) of all 72,000 users in the 10M dataset. For
every user in 10M dataset, we find the user in 1M dataset
such that the cosine similarity of their movie rating vector
is the highest (i.e., user rating behaviors are most identical).
The attributes of user in 10M dataset are obtained from the
closest user in 1M dataset. In this way, we build a dataset
consisting of 33,322 tagging and rating actions applied to
6,258 movies by 2,320 users. The tag vocabulary size is
64,663. The user attributes are gender, age, occupation and
zip-code. The attribute gender takes 2 distinct values: male
or female. The attribute age is chosen from one of the eight
age-ranges: under 18, 18-24, . . . , 56+. There are 21 differ-
ent occupations listed by MovieLens such as student, artist,
doctor, lawyer, etc. Finally, we convert zipcodes to states
in the USA (or foreign, if not in USA) by using the USPS
zip code lookup6. This produces the user attribute location,
which takes 52 distinct values.

Movie Attributes: Movie attributes are genre, actor and di-
rector. There are 19 movie genres such as action, animation,
comedy, drama, etc. The pool of actor values and director
values, corresponding to movies which have been rated by
at least one user in the MovieLens dataset, is huge. We pick
only those actors and directors who belong to at least one
movie that has received greater than 5 tagging actions. In
our experiments, the number of distinct actor attribute val-
ues is 697 while that of distinct director is 210.

Mining Functions: The set of tagging action groups is built
by performing a cartesian product of user attribute values
with item attribute values. An example tagging action group
is {gender=male, age=under 18, occupation=
student, location=new york, genre=action, actor=
tom hanks, director=steven spielberg}. The total num-
ber of possible tagging action groups is more than 40 bil-
lion, while the number of tagging action groups containing

4 http://www.grouplens.org/node/73
5 http://www.imdb.com/interfaces
6 http://zip4.usps.com
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at least one tuple is over 300K. For our experiments, we
consider 4535 groups that contain at least 5 tagging action
tuples. The user and item similarity (or diversity) is mea-
sured by determining the structural distance between user
and item descriptions of groups respectively. For topic dis-
covery, we apply LDA [4] as discussed in Section 2.2. We
generate a set of 25 global topic categories for the entire
dataset, i.e., d = 25. For each tagging action group, we per-
form LDA inference on its tag set to determine its topic dis-
tribution and then generate its tag signature vector of length
25. Finally, we use cosine similarity (or, some general min-
ing measure) for computing pair-wise similarity between tag
signature vectors or some general mining measure.

System Configuration: Our prototype system is implemented
in Python. All experiments were conducted on an Ubuntu
11.10 machine with 4 GB RAM, AMD Phenom II N930
Quad-Core Processor.

7.1 Quantitative Evaluation

First, we compare the execution time and result quality of
all 6 TagDM problem instantiations in Table 1 for the en-
tire dataset (consisting of 33K tuples and 4K tagging action
groups) using Exact, SM-LSH-Fi, SM-LSH-Fo, DV-FDP-
Fi and DV-FDP-Fo algorithms. We use the name Exact for
the brute-force approach on both tag similarity and diver-
sity maximization instances. We set the number of tagging
action groups to be returned at k = 3, since the Exact algo-
rithm is not scalable for larger k. Figure 4 and 5 compare the
execution time and quality respectively of Exact and LSH
based algorithms for Problems 1, 2 and 3 (Tag Similarity).
Figure 6 and 7 compare the execution time and quality re-
spectively of Exact and FDP based algorithms for Problems
4, 5 and 6 (Tag Diversity). The execution time is the time
taken to retrieve the result set. The quality of the result set is
measured by computing the average pair-wise cosine simi-
larity between the tag signature vectors of the k = 3 tagging
action groups returned. The group support is set at p = 350
(i.e., 1%); the user attribute similarity (or, diversity) con-
straint as well as the item attribute similarity (or, diversity)
constraint is set to q = 50%, r = 50% respectively. For LSH
based algorithms, the number of hash tables is l = 1 while
the initial value of d′ is 10.

We observe that the execution time of our LSH based for
similarity and FDP based algorithm for tag diversity prob-
lem instances are much faster than the Exact equivalent. In
Figure 4, the execution times of SM-LSH-Fi and SM-LSH-
Fo for Problems 1, 2 and 3 are comparable to each other and
is around 2 minutes. In Figure 6, the execution times of DV-
FDP-Fi and DV-FDP-Fo for Problems 4, 5 and 6 are slightly
more than 3 minutes. Despite significant reduction in time,
our algorithms do not compromise much in terms of quality,
as evident from Figure 5 and 7.

The number of input tagging action tuples available for
tagging behavior analysis is dependent on the query under
consideration. For the entire dataset, there are 33K such tu-
ples. However, if we want to perform tagging behavior anal-
ysis of all movies tagged by {gender= male} or {location=
CA}, the number of available tuples is 26,229 and 6,256 re-
spectively. Or, if want to perform tagging behavior analy-
sis of all users who have tagged movies having {genre=
drama}, the number of tuples is 17,368. Needless to say,
the number of tagging action tuples can have a significant
impact on the performance of the algorithms since it affects
the number of non-empty tagging action groups on which
our algorithms operate. As a result, we build 4 bins having
30K, 20K, 10K and 5K tagging action tuples respectively
(assume, each bin is a result of some query on the entire
dataset) and compare our algorithm performances for one of
the tag similarity maximization problems and one of the tag
diversity maximization problems, say Problem 1 and Prob-
lem 6 from Table 1 respectively. Both Problems 1 and 6
have user and item dimension constraints set to similarity.
Figures 8 and 9 compare the execution time and quality re-
spectively of the Exact algorithm with our smart algorithms:
SM-LSH-Fo for Problem 1 and DV-FDP-Fo for Problem 6.
The group support is set at p = 350 (i.e., 1%); user simi-
larity (or, diversity) constraint and item similarity (or, diver-
sity) constraint are set to q = 50%, r = 50% respectively,
and k = 3. For each bin along the X axis, the first two verti-
cal bars stand for Problem 1 (tag similarity) and the last two
stand for Problem 6 (tag diversity).

As expected, the difference in execution time between
our algorithms and the Exact is small for bins with lesser
number of tagging tuples for both tag similarity and diver-
sity. However, our algorithms return results much faster than
Exact for bins with larger number of tagging tuples. The
quality scores continue to be comparable to the optimal an-
swer, as shown in Figures 9.

Next, we analyze the performance behavior of the HAC
based and HC based algorithms introduced in Section 6. Re-
call that, both these techniques were developed to solve a
wide variety of complex mining problems which LSH based
and FDP based cannot handle. Before showcasing the power
of HAC and HC based algorithms, we first compare all the
four sets of algorithms - LSH based, FDP based, HAC based,
and HC based, under the same settings as above for the 6
TagDM problem instantiations in Table 1. Then, we inves-
tigate the potential of HAC based and HC based algorithms
to handle analysis tasks which LSH based and FDP based
cannot handle.

Figure 10 and Figure 11 compare the execution time and
quality respectively of the four algorithms for the 6 TagDM
problem instantiations in Table 1 - the first three dealing with
Tag Similarity and the last three dealing with Tag Diversity.
We employ LSH based technique SM-LSH-Fo for Problems
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Fig. 4 Execution Time:Problems 1, 2, 3 in Table 1 Fig. 5 Quality:Problems 1, 2, 3 in Table 1

Fig. 6 Execution Time:Problems 4, 5, 6 in Table 1 Fig. 7 Quality:Problems 4, 5, 6 in Table 1

Fig. 8 Execution Time:Varying Tagging Tuples Fig. 9 Quality:Varying Tagging Tuples

1, 2, 3 and FDP based technique SM-FDP-Fo for Problems
4, 5, 6. HAC and HC based techniques are capable of han-
dling both similarity and diversity mining problems. In or-
der to compare the algorithms under the same settings, we
consider cosine measure as the dual mining function for HC
based algorithm (though it can handle general measures),
since the LSH based, FDP based and HAC based methods
can only handle pair-wise aggregation mining function. Fig-
ure 10 reveals that the time taken by the different algorithms

are comparable to each other. For Problems 1, 2, 3, SM-
LSH-Fo takes 2 seconds while HAC based and HC based
algorithms take around 5 and 6 seconds respectively. For
Problems 4, 5, 6, DV-FDP-Fo takes 3 seconds while HAC
based and HC based algorithms take around 5 and 6 sec-
onds respectively. From Figure 11, we see that the quality of
results returned by the different algorithms for the 6 prob-
lems are very close to each other. Though the time taken by
HAC and HC algorithms are slightly higher than LSH and
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Fig. 10 Execution Time: Different Algorithms Fig. 11 Quality: Different Algorithms

Fig. 12 Execution Time: Exact vs HAC, Exact vs HC Fig. 13 Quality: Exact vs HAC, Exact vs HC

FDP based techniques for the same set of problems, HAC
and HC algorithms returns good quality results and are capa-
ble of handling additional complex mining objectives which
LSH and FDP based methods cannot handle. Therefore, we
recommend the employment of LSH and FDP based algo-
rithms for the simple tasks of TagDM framework, and HAC
and HC based algorithms for the more advanced problems
belonging to the extended TagDM framework.

In order to evaluate the performance behavior of HAC
based algorithm and HC based algorithm for complex min-
ing tasks, we compare the execution time and result qual-
ity of two complex TagDM problems - one for similarity,
one for diversity - using Exact and HAC based, and Exact
and HC based. We use the name Exact for the brute-force
approach on both similarity and diversity maximization in-
stances. We set the number of tagging action groups to be
returned at k = 3, since the Exact algorithm is not scalable
for larger k; the other settings (p,q, etc.) remain same too.
The complex mining tasks that we investigate are as follows:

Problem 7: We extend Problem 2 to handle additional con-
dition in the optimization goal. The objective is to find sim-
ilar user sub-populations who agree most on their tagging
behavior for a diverse set of items such that the selected user
groups contain at least one tagger from the list of top 50 fre-

quent taggers of the dataset. When the mining measure is
general instead of pair-wise, we refer to it as Problem 7’.
Problem 8: We extend Problem 5 to handle additional con-
dition in the optimization goal. The objective is to find di-
verse user sub-populations who disagree most on their tag-
ging behavior for a similar set of items such that the selected
user groups contain at least one tagger from the list of top 50
frequent taggers of the dataset. When the mining measure is
general instead of pair-wise, we refer to it as Problem 8’.

Figures 12 and 13 compare the execution time and qual-
ity respectively of Exact and HAC based, as well as Exact
and HC based algorithms for Problems 7, 7’ (Tag Similarity)
and Problems 8, 8’ (Tag Diversity). We observe that the exe-
cution time of our HAC based and HC based techniques are
much faster than the Exact equivalent. Despite significant
reduction in execution time, our algorithms do not compro-
mise much in terms of quality, as evident from Figure 13.

7.2 Qualitative Evaluation

We now validate how social tagging behavior analysis can
help users spot interesting patterns and draw conclusions
about the desirability of an item, by presenting several anec-
dotal results on real data. We also compare the utility and
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popularity of the 6 novel mining problems in Table 1 in
an extensive user study conducted on Amazon Mechanical
Turk (AMT)7.

7.2.1 Case Study

First, we present a set of anecdotal results returned by our
algorithms for the same query for different TagDM problem
instances. Specifically, we focus on Problems 2, 3, and 4 in
Table 1 and observe the results returned by our algorithms
for the query:
3 Analyze tagging behavior of {occupation= student}
users for movies.

– Problem 2 finds similar user sub-populations who agree
most on their tagging behavior for a diverse set of items.
We retrieve that male students use similar tags dystopia,
sci-fi, post-apocalyptic, etc. for diverse movies
“Serenity” and “The Matrix” - the former is a space west-
ern movie while the latter is a science fiction action film.

– Problem 3 finds diverse user sub-populations who agree
most on their tagging behavior for a similar set of items.
We identify that male and female students use similar
tags classic, hope, friendship, based on a book,
etc. for the movie “The Shawshank Redemption”.

– Problem 4 finds diverse user sub-populations who dis-
agree most on their tagging behavior for a similar set of
items. Our algorithm returns that male and female stu-
dents use diverse tags for movies directed by “Quentin
Tarantino” - male reviewers use tags crime, cult film,

dark comedy, etc. while female reviewers use insane,
visceral, ultra-violence, etc.

Second, we show how TagDM results change due to ad-
dition of conditions in optimization goal (Section 6.1) and
consideration of general dual mining function (Section 6.2),
other settings remaining the same. Let us consider the prob-
lem of finding diverse user sub-populations who agree most
on their tagging behavior for a similar set of items, and then
show how the results change due to inclusion of a condition
in the optimization goal. We observe the result returned for
the query:
3 Analyze tagging behavior of for {genre= romance}movies.

– Young female reviewers and middle-aged female review-
ers use similar tags like classic, sweet, love, etc. for
romance movies.

If the task is to find out diverse user sub-populations who
agree most on their tagging for {genre = romance}movies
such that majority of the users in the result set have used the
tag love at least once, the result is:

– Young female reviewers and middle-aged female review-
ers use similar tags Oscar, Meg Ryan, Nora Ephron,
Julia Roberts, etc. for romance movies.

7 https://www.mturk.com

Thus, we can infer that young and middle-aged female
reviewers agree in general in their feedback towards romance
movies; when these reviewers use the tag love, their agree-
ment is specifically expressed for movies starring Meg Ryan,
Julia Roberts, etc.

Let us consider the problem of finding diverse user sub-
populations who agree most on their tagging behavior for a
similar set of items, where similarity is either measured as
pair-wise aggregation (cosine) or is computed using a gen-
eral mining function. We compare the results returned for
the query:
3 Analyze tagging behavior for {director= steven

spielberg movies.

– For pair-wise cosine similarity measure: Male and fe-
male use similar tags Oscar, true story,
violence, etc. for war movies “Saving Private Ryan”
and “Schindler’s List” directed by Steven Spielberg.

– For general similarity mining measure (say, tagging be-
havior of result sub-population is closest to tagging be-
havior of global population): Old male and young male
use similar tags Oscar, true story, based on a book,
etc. for action movies and fantasy movies directed by
Steven Spielberg.

Thus, we can infer that the different mining measures
yield different analysis of tagging behavior. Due to the na-
ture of the general mining measure, it returns groups that
covers a broader spectrum of movies belonging to the query
than that covered by pair-wise cosine similarity aggregation.

Third, we show how results returned by our algorithms
for TagDM problem instances varies with increase in k, i.e.,
the number of user sub-populations being returned. We con-
sider the problem of finding similar user groups who have
similar tagging behavior for diverse set of items for the query:
3 Analyze tagging behavior of {gender= male} users for
movies.

– For k= 2 : Young male students use similar tags sci-fi,
dystopia, post apocalyptic, etc. for diverse movies
“Serenity” and “The Matrix”. The groups returned are:
g1 = {〈gender,male〉,〈age,young〉,〈occupation,
student〉,〈title,Serenity〉,〈genre,spacewestern〉,
(sci−fi,dystopia,apocalyptic)}
g2 = {〈gender,male〉,〈age,young〉,〈occupation,
student〉,〈title,TheMatrix〉,〈genre,action〉,
(sci−fi,dystopia,apocalyptic,martialarts)}

– For k= 4 : Young male students use similar tags sci-fi,
dystopia, philosophical, cult, etc. for diverse movies
“Serenity”, “The Matrix”, “Blade Runner”, and movies
directed by “Peter Jackson”. Movies directed by Peter
Jackson include “The Lord of the Rings (film series)”.

– For k= 6 : Young male students use similar tags sci-fi,
dystopia, based on a book, fantasy, etc. for diverse
movies “Serenity”, “The Matrix”, “Blade Runner”, movies
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directed by “Peter Jackson”, movies directed by “Joss
Whedon”, and “Eternal Sunshine of the Spotless Mind”.
Movies directed by Joss Whedon include “Serenity” and
“The Avengers”.

Thus, we can infer that young male student reviewers
agree in general in their feedback towards diverse set of
movies - a space western movie, a science fiction action film,
a noir detective fiction, a romantic dramedy science fiction
film, etc. We can also infer that diversity of items returned
as part of the result broadens with increase in the value of k.

TagDM analysis tasks can also throw in surprising re-
sults, as we see for the query:
3 Analyze tagging behavior of {gender= male, location=
california} users for movies.

– Old male and young male living in California use sim-
ilar tags for “Lord of the Rings” film trilogy of fan-
tasy genre. However, they differ in their tagging towards
“Star Wars” movies having similar genre. This is be-
cause, the genre of the latter series borders between fan-
tasy and science fiction. Surprisingly, old male likes it
while young male does not.

7.2.2 User Study

We conduct a user study through Amazon Mechanical Turk
to elicit user responses towards the different TagDM prob-
lem instances we have focused on in the paper, and inves-
tigate if the problems are interesting. We generate analysis
corresponding to all 6 problem instantiations for the follow-
ing randomly selected queries:

� Analyze tagging behavior of {gender= male} users for
movies.

� Analyze tagging behavior of {occupation= student}
users for movies.

� Analyze user tagging behavior for {genre= drama}movies.

Fig. 14 User Study

We have 50 independent single-user tasks. Each task is
conducted in two phases: User Knowledge Phase and User
Judgment Phase. During the first phase, we estimate the user’s
familiarity about movies in the task using a survey, besides
her demographics. In the second phase, we ask users to se-
lect the most preferred analysis, out of the 6 presented to
them, for each query. Since there are 3 queries and 50 single-
user tasks, we obtain a total of 3×50 = 150 responses. The
first phase eliminates 5 of the 50 single-users. Therefore,
our user study is based on a total of 3×35 = 135 responses,
which are aggregated to provide an overall comparison be-
tween all problem instances in Figure 14. The height of the
vertical bars represent the percentage of users, preferring a
problem instance. We also place the numerical number of
user responses against each of the vertical bars. It is evident
that users prefer TagDM Problems 2 (find similar user sub-
populations who agree most on their tagging behavior for
a diverse set of items), 3 (find diverse user sub-populations
who agree most on their tagging behavior for a similar set
of items) and 6 (find similar user sub-populations who dis-
agree most on their tagging behavior for a similar set of
items), having diversity as the measure for exactly one of
the tagging component: item, user and tag respectively.

8 Related Work

To the best of our knowledge, our work is the first to develop
a general framework that encompasses mining collaborative
tagging actions, studies its complexity and develops efficient
algorithms. We summarize work related to topic discovery,
tag mining and its applications, and the heuristics we use in
our algorithms.

Topic Discovery : There are many topic discovery tech-
niques such as Latent Dirichlet Allocation (LDA) [4] [2],
tf*idf [39] and OpenCalais. In this work, we use LDA, a
generative probabilistic method proven to be robust when
looking for hidden topics in Web documents [4] [1]. The
classical LDA has to be extended so that they can be appli-
cable for short documents such as microblog tweets and tags
[35]. A number of of LDA-based topic models have been
proposed for modeling the social annotation using content
and tags [36,30], community interests [47] and user factors
[6].

Tag Mining : Tag mining has been used in multiple ap-
plications including tag recommendations [29], document
navigation [19], item recommendations [28] [18], and tag-
ging motivation [27] and prediction [23]. There has been a
steady stream of work on analyzing user’s tagging behav-
iors in collaborative tagging websites such as the nature of
tags chosen by users[15,41], its structure [14], its organiza-
tional properties [22]. However, most of these works are tai-
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lored to specific datasets and none of them defines a general
mining problem, studies its complexity and develops effi-
cient generic algorithms. We posit that despite recent work
on improving tag selection for tag clouds [44], tag clouds
are an inefficient method to summarize a set of of user sub-
population.

Algorithmic Techniques : Locality Sensitive Hashing (LSH),
Facility Dispersion Problem (FDP), Hierarchical Agglomer-
ative Clustering (HAC) and Hill Climbing were first intro-
duced in [24] [12], [20], [5] and [16] respectively. LSH
is used in prominent applications including duplicate de-
tection and nearest neighbor queries [24]. In this work, we
show how we adapt LSH to rank and choose the best bucket
containing tagging analysis result. While being less efficient
than LSH, the computational geometry based approach for
the facility dispersion problem in [38] serves tag diversity
problem instantiations and may be extended to solve sim-
ilarity problems. While being less efficient than LSH and
FDP, HAC serves both tag similarity and diversity. Our idea
of using structurally meaningful groups as the basis for tag-
ging behavior interpretation and hill exploration is inspired
by our work in [9].

Data Cubes : Our idea of using structurally meaningful
cuboids as the basis for tagging interpretation is inspired by
studies in the field of data cube mining, first proposed in [17]
and [37]. Most of those studies, however, focus on how to
efficiently compute aggregate measures for all cuboids and
are therefore orthogonal to our work. Among those studies,
KDAP [45] and Intelligent Rollups [40] investigate the prob-
lem of ranking and summarizing cuboids, which is similar
to our goal here. However, none of these adopts formal ob-
jective measures based on dual mining over user and item
tagging behavior. To the best of our knowledge, our work is
the first to leverage structurally meaningful descriptions for
collaborative tagging analysis.

Recommendation Explanation : Recommendation systems
is a decades old subject that has been gaining popularity re-
cently due to their adoption by online sites such as Amazon
and Netflix. In connection to this rising popularity, explain-
ing recommendations has also received significant attention.
A systematic study of explanations for recommendation sys-
tems is provided by [21]. A discussion of how explanations
can be leveraged for recommendation diversification is in
[46].

9 Conclusion

In this paper, we developed the first framework to mine so-
cial tagging behaviors. We identified a family of mining prob-
lems that apply two opposing measures: similarity and diver-
sity, to the main three tagging components: users, items, and

tags. We showed that any instance of those is NP-Complete
and developed four sets of efficient algorithms based on:
local-sensitive hashing (LSH), solutions developed in com-
putational geometry for the facility disperson problem (FDP),
hierarchical agglomerative clustering (HAC) and hill climb-
ing (HC). Our extensive experiments on the MovieLens data
show the superiority of our algorithms on their baseline coun-
terparts. In the future, we plan to explore the applicability of
our framework to other domains such as topic-centric ex-
ploration of tweets and news articles, an area that has been
receiving a lot of attention lately. In particular, we would like
to explore the usefulness of our mining techniques for min-
ing and characterizing events in tweets and news at large.
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