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ABSTRACT
Many emerging applications such as collaborative editing,
multi-player games, or fan-subbing require to form a team
of experts to accomplish a task together. Existing research
has investigated how to assign workers to such team-based
tasks to ensure the best outcome assuming the skills of indi-
vidual workers to be known. In this work, we investigate how
to estimate individual worker’s skill based on the outcome
of the team-based tasks they have undertaken. We con-
sider two popular skill aggregation functions and estimate
the skill of the workers, where skill is either a deterministic
value or a probability distribution. We propose efficient so-
lutions for worker skill estimation using continuous and dis-
crete optimization techniques. We present comprehensive
experiments and validate the scalability and effectiveness of
our proposed solutions using multiple real-world datasets.

1. INTRODUCTION
Automated team formation is widely studied in computer-

assisted cooperative systems [23, 1, 2, 25, 19, 18]. This body
of work assumes that a team of experts is to be formed to
undertake a task that requires expertise in one or more do-
mains. The formed team is assumed to have the expertise or
skills required to meet the expected quality of the task (as
well as other constraints such as coordination cost). Nat-
urally, the formulation of this team formation problem as-
sumes that the skills of individual workers are known a pri-
ori. We seek to investigate an orthogonal question: Given
a set of completed tasks undertaken by a team of workers,
estimate the skills of the individual workers. We refer to this
as the skill estimation problem for team-based tasks.

A number of applications rely on team-based work. Ex-
amples are researchers co-authoring a paper, experts review-
ing scientific papers, athletes playing team-based games, as
well as some emerging crowdsourcing applications, such as
Galaxy Zoo1 or Foldit2.

1http://www.galaxyzoo.org/
2http://fold.it/portal/
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Skill Estimation Problem: Estimating the skills of in-
dividual workers for team-based tasks is acknowledged to be
an important open problem [24] in this space. We borrow
the settings of the team formation problem [23, 1, 2, 25, 19,
18]. Inputs to our skill estimation problem are a set of teams
(each team is a set of workers), that has completed one (or
more) tasks. Each task requires a skill that is also known
a-priori. Each completed task gets evaluated quality-wise
and a numeric score is assigned to it. A worker may partic-
ipate in different tasks with different teams. A worker skill
is a deterministic value, or a probability distribution (pdf)
that we wish to estimate as accurately as possible from the
quality feedback assigned to the tasks in which her team
participated. Modeling skill as a pdf can capture the fact
that some workers have large variance in their skill levels
when performing tasks, whereas others have smaller vari-
ances. For example, two players may have the same average
points per game, but one has greater variance over the other.

Skill Aggregation Functions: To be able to effectively
estimate the skills of workers involved in team-based efforts,
it is critical to formulate how a team’s skill is computed
by aggregating the skills of individual workers in the team.
Prior work [24] indicates that there exists several skill ag-
gregation functions: (1) Sum where the skill of a team is
the sum of skills of individual workers. As an example, the
number of blocks that a basketball team makes in a game is
the sum of the defense skills of the defenders. (2) Max where
the skill of a team corresponds to its most skilled worker.
The quality of a research paper may be dominated by the
expertise of the most skilled author. (3) A complex function
defined over workers skills, as well as other aspects, such as
collaboration effectiveness, is another alternative. Such a
complex function might not assume independence between
different workers’ skills. We explore Sum and Max in depth
and discuss extending our algorithms to handle complex ag-
gregation functions in Section 6.

Task Quality: In general, measuring task quality de-
pends on the application. We assume that we are provided
with a quality evaluation (as a numeric score) for each task.
The applications we describe above can indeed be evaluated
in many ways: for example, the number of citations of a
paper reflects its (quality) impact, a team has an offense or
a defense score in a particular basketball game.

Team Skills and Task Quality: Typically, workers are
evaluated based on their skills (where skill is deterministic or
probabilistic) while tasks are evaluated based on quality. It
is apparent that the skills of the workers in a team contribute
to the quality outcome of the task they undertake together.
We assume that there is a known, one-to-one correspondence



between worker skills and task quality. In the basketball
example, defense skills of workers provide defense score for
the game, while offense skills give rise to an offense score.

Challenges: Even when the relationship between skill
and quality is injective, i.e. one-to-one, there are number of
challenges in solving the skill estimation problem. The key
challenge comes from the fact that the quality evaluation
reflects the aggregated skill of the entire team, while we seek
to estimate the skill of individual workers. Proportionally
allocating the final quality of a task among its constituent
workers to estimate the skill of every worker, considering
different tasks that she has undertaken, is non-trivial.

Our Approach: In this paper, we primarily focus on
learning individual worker skills under Sum and Max aggre-
gation functions. Our methods could be trivially extended
to Min aggregation. Moreover, if dependency between the
workers can be expressed in a linear fashion, our determin-
istic solutions can be extended to handle those scenarios
as well. We defer more detailed discussion on this to Sec-
tion 6. At a high level, our approach is based on computing
the “distance” between the estimated skills of the individu-
als and the known quality of the completed tasks that they
have undertaken, assuming a given skill aggregation func-
tion. We refer to this distance as error and quantify it using
the `2 function, a common distance measure. Thereby, we
formalize skill estimation as an optimization problem with
the goal of minimizing error.

We start by considering deterministic skills. The Sum vari-
ant, Sum-Skill-D, is formalized as a continuous optimiza-
tion problem while the Max variant, Max-Skill-D, is posed
as a discrete optimization problems. We propose quadratic
programming-based solutions for Sum and max-algebra[7, 3]
based solutions for Max. We employ a similar optimization
framework for skills described as a probability distribution
function (pdf). Both variants, Sum-Skill-P for Sum and
Max-Skill-P for Max, are designed to estimate the skill pdf
of each worker such that the aggregated `2 error between
the joint pdf, i.e., the team’s skill, and that of the individual
pdfs is minimized. For Sum-Skill-P (resp., Max-Skill-P),
the pdf that represents the team skill is a joint pdf computed
by taking the sum convolution (resp., max convolution) [4] of
individual skill pdfs of the participants. The key challenge
here is to be able to deconvolve the joint pdfs to estimate
the individual pdfs accurately.

Finally, we present a comprehensive evaluation of our so-
lutions using two real-world datasets and demonstrate that
they indeed estimate the true skills of individual workers ef-
fectively and compare with several appropriate baseline al-
gorithms. Additionally, we demonstrate that our solutions
are scalable using large-scale synthetic data. In summary,
we make the following contributions:

• Formalism: We formalize the problem of skill esti-
mation for team-based tasks for different skill aggre-
gations (Section 3).

• Solutions: We propose a comprehensive optimization-
based formulation considering both deterministic and
probabilistic interpretations of skills. We propose prin-
cipled solutions and present theoretical analyses (Sec-
tions 4 & 5).

• Discussion & Experimental results: We conduct
comprehensive experiments on multiple real-world datasets
and a synthetic one that show that our algorithms are

u1 u2 u3 quality (
−→
Q)

t1 1 1 0 15
t2 0 1 1 10

Table 1: Task Assignment Matrix and Quality Evaluation Vector

accurate and efficient (Section 7). We discuss the ex-
tensions of the problems in Section 6.

2. APPLICATIONS OF TEAM-BASED TASKS
We now present a generic running example which will be

used throughout the paper and motivate the two skill ag-
gregation functions studied in the paper.

Example 1. Running Example: Imagine a specific in-
stance of the skill estimation problem where the following
input is provided: A Boolean matrix, that represents which
worker worked on which tasks (i.e., worker to task assign-
ment matrix) and a vector that represents the evaluated qual-
ity of the two tasks (see Table-1). Our objective is to learn
the skills of workers u1, u2, u3.

Sum Skill Aggregation - Team-based sports: Con-
sider a team-based activity such as Basketball where each
player contributes to a game in multiple ways: attack play-
ers who together contribute to scores and defense players
who together contribute to blocks. Naturally, the scores and
blocks of a team are the sum of its individual worker’s scores
and blocks. Given available history of past games and their
respective outcomes (scores and blocks), we intend to learn
the skill of individual players in scores and in blocks.

Maximum Skill Aggregation - Research paper co-
authorship: For a team of researchers co-authoring a pa-
per, the qualitative outcome of the work is often driven by
the most skilled (or experienced) researcher. Similarly, the
quality evaluation of a paper could be modeled simply as the
number of citations it gets within a given time period. As a
concrete scenario, the number of citations that a database
paper gets is an indicator of its technical quality. In this ex-
ample, we intend to learn each co-author’s skill (expertise)
in the database area.

These two aggregation functions represent a wide range
of team formation application scenarios [27, 13]. Further
discussions on other skill aggregation is deferred to Section 6.

3. DATA MODEL AND FORMALISM

3.1 Data Model
Workers: We have a set U = {u1, u2, . . . , un} of n avail-

able workers. For the NBA application, workers are players,
whereas in the co-authorship application, workers are the
authors.

Domains & Skills: We are given a set of skill domains
D = {d1, d2, . . . , dm}. Skill domains are associated with
both tasks and workers. We assume that each domain is
independent and focus on estimating workers’ skill per do-
main. For the NBA application, domains could be defense
or attack and each player has a value for each domain (0
denotes no skill in a domain).

Our problem now simplifies to estimating a single skill per
worker and invoking the estimation for each domain inde-
pendently. We represent a worker skill as su. The skills of



all n workers are presented by a vector
−→
S . su is either a

deterministic value, or a probability distribution. The lat-
ter scenario assumes that some workers have large variance
in their skill levels when performing tasks, whereas others
have smaller variances. For example, in NBA two players
may have the same average points per game, but one has
greater variance over the other. Thus, su is a random vari-
able and is represented by a probability distribution function
(pdf). To simplify exposition, we assume that the skill pdf
of a worker u is discretized across w possible range of values
(i.e.,buckets), where

∑
w Pr(s

u = w) = 1. Using Exam-
ple 1, if the skill pdf of worker u1 (in the range of [0− 15])
is discretized using 3 equi-width buckets, the buckets may
represent skill [0− 5], [5− 10], [10− 15].

Team Based Tasks: We assume a set T of l completed
team-based tasks. Each task involves a team of workers.
For the NBA application, each game is a task, whereas for
co-authorship, each research paper is a task.

Teams or Groups: A team or group G ⊆ U comprises of
a set of workers from U who participate in a task together.
A team G undertaking a task t is referred to as Gt.

Task Assignment Matrix: For each completed task t,
we know the workers in Gt who undertook t. This gives
rise to the task assignment matrix Al×n (n workers and l
tasks). Each cell aij ∈ {0, 1} contains a binary value, where
a 1 indicates that the ith task was undertaken by the jth

worker, and 0 otherwise.
Task Quality Evaluation Vector: Each completed task

t is assigned a continuous quality score. For all l tasks, we

obtain a vector of length l,
−→
Q . For example, the quality of

a team G in a game t could be measured as the total scores
in that game. The number of citations could automatically
reflect the quality of a published research paper.

3.2 Formalism
Next, we formalize different skill aggregation functions for

team-based applications.
Additive (Sum) Skill Aggregation Model: In this

model [24], the performance of a team for a task t is com-
puted as the sum of skills of the workers who undertook task
t together. Formally, the skill of a team Gt for task t, can
be computed as:

qt =
∑
u∈Gt

su (1)

Team-based sports are popular examples of the additive skill
aggregation model, where more workers add more value to
the task. In the running example, the skill of team of workers
u1 and u2 working on task t1 is (su1 + su2) = 15.

Maximum (Max) Skill Aggregation Model: In this
model [24], the team skill is dominated by the skill of the
most skilled worker in the team. Formally, we have:

qt = max
u∈Gt

su (2)

This model fits closely with creative tasks[27]. For ex-
ample, a research work may require forming a team, where
the quality is primarily dominated by the highest skilled re-
searcher. In the running example, the skill of team (u1, u2)
working on task t1 can be computed as max (su1 , su2) = 15.

3.2.1 Problem Definition
Worker Skill Estimation: For each worker u, su needs

to be computed considering all the tasks undertaken by u.

As a simple example, for the additive aggregation model,
this gives rise to a system of linear equations, satisfying

A×
−→
S =

−→
Q , where the objective is to estimate

−→
S .

In many scenarios, there may not be any feasible solution
to a given problem instance. Consider our running example
again under Max skill and assume that worker u1 also partic-
ipated in task t2. Now we can assign either skill value of 15
or 10 to her; either way, this does not produce a feasible solu-

tion (because A×max(
−→
S ) and

−→
Q are not same). Therefore,

we must estimate skill accuracy by measuring some error.

We relax our formulation into an inequality - i.e A×
−→
S �−→

Q . Our objective is to estimate an optimal value for
−→
S that

satisfies all the inequalities, and has a small reconstruction
error. For every task t, the reconstruction error is the differ-
ence between the estimated skills of Gt and the given quality
of t. The overall reconstruction error across all l tasks is de-
noted by E(

−→
Q,A⊗

−→
S ). Our optimization, therefore, is to

Minimize
−→
Q −A⊗

−→
S (3)

The operator ⊗ is × for additive skill model and max for
maximum skill aggregation model.

Reconstruction Error: Our problem is most aptly rep-
resented with one sided error [6] which assumes that the
actual quality value of task t (i.e., qt) is never smaller than
that of the estimated skills of the team that undertook t,
for a given skill aggregation model. While this conservative
approach may underestimate the true skill of a worker, it in
turn provides better assignment of workers to future tasks,
where the assigned workers will necessarily surpass the min-
imum skill requirement of the tasks. On the other hand, two
sided error may overestimate worker’s skill, which may lead
to poor task assignment, because the true skill of a worker
is actually smaller than what is estimated. Formally, one

sided error could be specified as
−→
Q −A×

−→
S and we require

this expression to be non-negative. Considering one sided
error, operator � only represents ≤ between the left and the
right hand side of the above equation.

Error Functions: Recall that we compute the recon-

struction error E(
−→
Q,A ⊗

−→
S ) between two vectors,

−→
Q and

A ⊗
−→
S by measuring their distance or norm. The distance

between two vectors
−→
V and

−→
V ′ could naturally be computed

using several norms. We focus on `2 and note that our so-
lution framework requires simple adaptation for `1 and L∞.

`2 norm: ||
−→
V −

−→
V ′||2 =

√
Σk(vk − v′k)2. As an example,

for our running example, if A ⊗
−→
S is a vector (9, 10)T for

two tasks and
−→
Q is (15, 10)T , the reconstruction error is

E(
−→
Q,A⊗

−→
S ) =

√
(9− 15)2 + (10− 10)2 = 6

Selecting Optimal
−→
S : In an over-determined system [5],

where there are more tasks than workers, there may not be
any feasible solution. Our objective in this case is to iden-
tify a solution that has the smallest `2 reconstruction error.
For an under-determined system [5], there are more work-
ers than tasks. In this scenario, there may be many feasible
solutions and the objective is to select one of them that min-
imizes some prior function. The most common approach is
to use MaxEnt or principle of Maximum Entropy [15] for such
scenarios. We explore the former in depth (which is realistic
for our applications) and defer the latter to future work.

Optimization Problems: Formally, given a task as-

signment matrix A and task quality estimate
−→
Q , where,



A×
−→
S ≤

−→
Q , estimate

−→
S (where su is the skill of worker u

in this vector) that minimize:

Problem 1. Sum-Skill-D E(
−→
Q,A×

−→
S ), where su is de-

terministic.

Problem 2. Sum-Skill-P E(
−→
Q,A ×

−→
S ), where su is a

discrete pdf.

Problem 3. Max-Skill-D E(
−→
Q,A×max(

−→
S )), where su

is deterministic.

Problem 4. Max-Skill-P E(
−→
Q,A×max(

−→
S )), where su

is a discrete pdf.

4. SUM-SKILL
We consider the first skill aggregation function - Sum -

where the team skill corresponds to the sum of its members.

4.1 Sum-Skill-D
For the deterministic case, the skill of each worker u (i.e.

su) corresponds to an unknown variable. Given a task t,
the skill of a team is the sum of its individual workers who
undertook it -

∑
u∈t s

u. This expression is upper-bounded
by the qualitative skill assigned to the task. Formally, each
task t completed by team Gt corresponds to an inequality∑

u∈Gt
su ≤ qt (4)

Sum naturally lends itself to formulating skill estimation as
a system of linear inequalities as follows:

A×
−→
S ≤

−→
Q (5)

Running Example: The example from Section 3.1 can
be formalized as a set of constraints, such as:

su1 + su2 ≤ 15; su2 + su3 ≤ 10; lb ≤ su ≤ ub

where lb and ub are problem specific lower and upper
bounds for the skill of workers. The above inequalities are

trivially satisfiable by setting all entries of
−→
S to 0. In order

to obtain realistic values, we need to design an optimization
formulation based on how close the current assignment is to
the qualitative assignment provided by the domain expert,
i.e., by minimizing the reconstruction error.
`2 Reconstruction Error: We use `2 measure that com-

putes the Euclidean distance between
−→
Q and A×

−→
S . If the

linear inequalities are indeed equalities, this would reduce to
linear least squares [16]. Due to inequalities and additional
constraints this becomes a constrained least square prob-
lem. Specifically, our formulation has a quadratic objective
and linear constraints - which we model as a quadratic pro-
gramming problem with linear constraints. This variant is
a known instance of convex optimization [29].

The corresponding optimization problem is formalized as

minimize

√∑
t

et2

subject to qt − (
−→
At × su) ≥ et, ∀u ∈ Gt

lb ≤ su ≤ ub

(6)

where lb and ub are problem specific lower and upper bounds
for the skill of workers. Specifically, our problem corre-
sponds to a box-constrained least squares as the solution

vector must fall between known lower- and upper-bounds.
The solution to this problem can be categorized into active-
set or interior-point methods. The active-set based meth-
ods construct a feasible region, compute the corresponding
active-set, and use the variables in the active constraints to
form an alternate formulation of least square optimization
with equality constraints [29]. The interior-point methods
encode the convex set (of solutions) as a barrier function.
Quasi-Newton methods are then used to optimize this func-
tion. Using our running example, the estimated skill vector
of workers are 〈9.0014, 5.994, 4.0031〉 with `2 error of 0.

Complexity: Both the active-set and interior-point meth-
ods are very efficient and run in polynomial time [5]. The
worst case complexity for computing constrained least squares
(by using generalized singular value decomposition) isO(n2l+
n3) [5]. In practice, iterative algorithms often return the so-
lution within a small number of iterations [5].

4.2 Sum-Skill-P
We now describe the skill estimation problem consider-

ing skill of a worker u, i.e., su as a probability distribution
function (or simply a pdf) that is unknown to us. It can be
any arbitrary distribution, which is discretized over a set of
w possible range of values (each range is a bucket) that the
pdf can take. While such discretization may introduce error
in the overall calculation, there are no efficient alternatives
that can handle any arbitrary pdf.

If there is only a single task in the task assignment ma-
trix A, we intend to produce the skill pdfs of the workers
such that the joint pdf of quality of the assigned team is as
close as possible to the obtained quality. However, the task
assignment matrix contains many tasks with (possibly) dif-
ferent quality and a worker has typically undertaken many
tasks. Thus, we need to estimate the skill pdfs of the work-
ers such that the `2 error across all the tasks is minimized.
The quality of each completed task (qt) by a team is known
and performed by taking the Sum of individual worker’s skill
pdfs. As we describe below, this step is akin to taking the
Sum-convolution of the individual skill pdfs of the workers to
compute the joint skill pdf of the team. However, we do not
know these individual skill pdfs - rather, only the quality of
each team as a whole (i.e., the qt’s) are available at our dis-
posal. The challenge is to be able to estimate the individual
skill pdfs from these qt’s (in other words, deconvolve the qts
to generate the individual skill pdfs) such that the error is
minimized. Moreover, the one-sided error constraints must
also be respected. More specifically, we need to perform the
following three necessary transformations for that.

(1) Computing skill pdf of a team: When each worker’s
skill in a team Gt who undertakes task t is a pdf, the qual-
ity of the team Gt is also a pdf. We assume the indepen-
dence of workers’ skill, i.e., the skill of a worker does not
improve/degrade due to the presence of certain fellow work-
ers. For Sum skill, the joint pdf of the team’s skill (or qual-
ity) (e.g., multiparty online games) could be computed using
Sum-Convolution of the individual skill pdfs. The defini-
tion of Sum-Convolution of two pdfs is adapted from prior
work [4] and is given below. A simple example of the joint
skill distribution using Sum-aggregation (i.e., Sum Convolu-
tion) is presented in Figure 1(a) (further described in (2)),
considering two skill pdfs after appropriate discretization.
In general, Sum-Convolution of an arbitrary number of M
pdfs can be computed by performing a sequence of M − 1
Sum-convolutions, first convolving the first and the second



pdfs, then convolving the resultant pdf with the third pdf,
and so on.

Definition 1 (Sum-Convolution of Distributions).
Assume that f(x), g(x) are the pdfs of two independent
random variables X and Y respectively. The pdf of the
random variable X + Y (the sum of the two random vari-
ables) is the convolution of the two pdfs: ∗({f, g})(x) =∫ x

0
f(z)g(x− z) dz.

(2) Representing qt as a pdf: The quality of task t,
qt, a deterministic value, should also be represented as a
pdf. Consider Example 1 (Section 2) and notice that qt1 =
15. If u1 and u2 have worked in task t1, without any prior
information, the skill of both workers su1 and su2 can range
between [0, 15]. While the task quality can be between [0−
30], we know that it has a skill of 15. Therefore, the resultant
pdf is between [0, 30], yet only the skill value of 15 has a
probability of 1, and all other skill values have probability of
0. We translate the deterministic quality of each completed
task to a pdf and discretize involving w equi-width buckets:
for t1, these buckets are [0 − 10], [10 − 20], [20 − 30], where
only the second bucket is associated with a probability of 1
(as it contains 15).

(3) One sided error: Unlike the deterministic case, where
one can easily specify one sided error constraints, such as,
su1 + su2 ≤ 15, there is no obvious easy way to specify
such hard constraints, when each su is a pdf. Therefore,
we ensure that the probability that the joint pdf su1 + su2

is larger than 15 is smaller than a predefined threshold, λ.
i.e., Pr(su1 + su2 > 15) ≤ λ. By controlling the value of
λ, we can tune these constraints in a flexible manner. Since
the skill pdf of each worker is discretized over a set of w
different ranges, we can still use `2 distance to compute the
difference or error between the joint pdf (represented using
Sum-Convolution) and the pdf that represents the obtained
quality [9].The corresponding optimization problem is,

minimize

√∑
t

(qt − (
−→
At × su))2 (7)

The constraints are to be set up such that the pdfs of the
workers satisfy the probability axioms as well as the one-sided
error constraints, such as.

Pr(
∑
u∈t

su > qt) ≤ λ ∀t

∑
w

Pr(su = w) = 1 ∀u.

If skill pdf a worker is represented involving w buckets,
then, each skill pdf is associated with w unknown variables.
Table 2 shows the various pdfs that are associated with Ex-
ample 1, if each of the pdfs are discretized using 3 (w = 3)
buckets. Without loss of generality, imagine variables (un-
knowns) pui represent the probability of the i-th skill bucket
of su (for skill of u1, pu11 , pu12 , pu13 are [0−5], [5−10], [10−15],
respectively). Also, let pti (known) represent the probability
of the i-th skill bucket of qt (for qt1 , [0−10], [10−20], [20−30]
are represented using pt11 , p

t1
2 , p

t1
3 respectively, where, pt12 =

1).
The challenge in solving the optimization problem is esti-

mating these variables (in other words, deconvolve the qts to
generate the individual skill pdfs) such that they minimize

pdf range known/unknown
su1 [0− 5], [5− 10], [10− 15] all unknown
su2 [0− 5], [5− 10], [10− 15] all unknown
su3 [0− 5], [5− 10], [10− 15] all unknown
qt1 [0− 10], [10− 20], [20− 30] all known
qt2 [0− 10], [10− 20], [20− 30] all known

Table 2: Discretized pdfs using 3-equi-width histograms for Ex-
ample 1

the `2 error. For our running example, just considering the
second bucket of qt1 ([10−20], where the probability mass is
1), we need to set up the variables such that the probability
that the sum of su1 + su2 to be in [10 − 20] is as high as
possible. This can be done by computing the probability,
when su1 = [5−10]& su2 = [5−10], or su1 = [0−5]& su2 =
[10− 15], or su1 = [10− 15]& su2 = [0− 5]. Therefore, the
corresponding formulation is to solve and minimize for

(pt12 − {pu12 ∗ pu22 + pu11 ∗ pu23 + pu13 ∗ pu21 })
2

It is easy to notice that even for the toy example that in-
volves only two workers per task, such a formulation gives
rise to a quartic polynomial (degree of 4). For the gen-
eral case, the degree of the resultant polynomial could be
of the order n. Solving such functions optimally is thus
prohibitively expensive. We resort to a hill climbing based
efficient heuristic solution, as a viable alternative.

Heuristic Algorithm: We design a hill climbing based
heuristic algorithm that uses random restarts. We start with
a pdf for each su (uniform in our case in lack of any prior
knowledge) and the overall objective function value (i.e., `2
error) is computed. In a single iteration, this algorithm se-
lects one of the workers u at random and updates its pdf by
a small value δ. Notice that, since the pdf of each worker
is discretized using w buckets, this step corresponds to ran-
domly choosing one of the w buckets and increasing (or de-
creasing) the probability of it by δ, while readjusting the
other buckets uniformly to keep the probability mass to 1.
As an example, for u1, if w = 3, δ = 0.2, and the first
skill bucket (pu11 ) of the initial uniform distribution (pu11 =
0.33, pu12 = .33, pu12 = .34) of su1 is being increased, then the
adjusted pdf of su1 will be, pu11 = 0.53, pu12 = .23, pu12 = .24.
With the modified pdf of u, it recomputes the objective
function value and takes this change, if the error is fur-
ther reduced. This process continues until no change can
be found to improve the error. The solution is then said to
be “locally optimal”. With random restart, the algorithm
performs hill-climbing iteratively, each time with a random
initial condition and the best solution is kept at the end as
the final solution. The various restarts increase the likeli-
hood of finding “global optima”. Our algorithm discovers
the global optima on Example 1 and produces the following
3 distributions, su1 = [0, 0, 1], su2 = [1, 0, 0], su3 = [0, 1, 0].

Complexity: The exact asymptotic form is hard to de-
rive, as that depends on how fast it reaches the local optima
in a given iteration. Our experimental results indicate that
the solution converges within a few minutes most of the time
even for a large scale dataset.

5. MAX-SKILL
We now describe our solution for the maximum skill ag-

gregation function Maximum (or simply Max). Under Max,
the skill of a team corresponds to that of its most skilled
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Figure 1: An example joint pdf after, (a) Sum aggregation using Sum-Convolution (b) Maximum aggregation using Max-Convolutions. In
fact, our objective is to learn the individual skill pdfs, given qt.

member and the problem of estimation individual skills be-
comes a discrete optimization problem. As before, we first
describe the deterministic solution, and then illustrate the
probabilistic case.

5.1 Max-Skill-D
Before we describe our solution, we explain the correspon-

dence between our problem and a mathematical algebraic
theory Max-Plus Algebra [7, 3], which has been developed
to solve a number of discrete optimization problems.

5.1.1 Overview of Max-Algebra
Traditionally, Max (or Max-Plus) Algebra provides tech-

niques for solving non-linear problems that could be speci-
fied in the form of linear problems, when arithmetic addition
is replaced by a maximum operation, and arithmetic multi-
plication is replaced by addition [7, 3]. Further, the inverse
of a number is equivalent to its negation and ∞ is denoted
by ε. Using mathematical notations, the key max-algebraic
equations are given below:

a⊕ b = max(a, b) a⊗ b = a+ b a−1 = −a

a⊕ ε = a a⊗ ε = ε

Almost all linear algebraic operations could be derived in
the context of max algebra. Specifically, the matrix-vector
multiplication required for solving a system of (in)equalities
can be specified as:

A⊗ b =

⊗∑
k

ai,k ⊗ bk = max
k

(ai,k + bk) (8)

Intuitively, the system of inequalities A ⊗ x ≤ b can be
interpreted as

(a11 ⊗ x1)⊕ (a12 ⊗ x2)⊕ . . .⊕ (a1n ⊗ xn) ≤ b1
. . .

(al1 ⊗ x1)⊕ (al2 ⊗ x2)⊕ . . .⊕ (aln ⊗ xn) ≤ bl

Using the standard linear algebraic notation, this is equiv-
alent to solving the system of linear inequalities:

max{(a11 + x1), (a12 + x2), . . . , (a1n + xn)} ≤ b1
. . .

max{(al1 + x1), (al2 + x2), . . . , (aln + xn)} ≤ bl

If this system of inequalities has a solution, then we can
see that it must satisfy the following set of inequalities:

x1 ≤ min{(b1 − a11), (b2 − a21), . . . , (bl − al1)}
. . .

xn ≤ min{(bl − a1n), (b2 − a2n), . . . , (bl − aln)}

The candidate solution that we derive this way is called
the principal solution [7, 3], using Equation 9.

xi =
(
maxAi,j ⊗ (bi)

−1)−1
= min{bi ⊗ a−1

ij } (9)

5.1.2 Proposed Solution
Considering Max, we however have slightly different for-

mulations than in Max-Algebra. Given a task t which is
undertaken by group Gt, we intend to estimate the skills of

the workers to minimize, qt −max (
−→
At × su) ≥ et, ∀u ∈ Gt.

For our running example, this gives rise to the following set
of constraints:

max (su1 , su2) ≤ 15; max (su2 + su3) ≤ 10; lb ≤ su ≤ ub

where lb and ub are problem specific lower and upper bounds
for the skill of workers. Even though, the operator inside

max (
−→
At × su) is a multiplication (instead of an addition

in the traditional max-algebra), the techniques proposed in
Max-Algebra leaves enough intuition behind to design a so-
lution for our problem considering one sided error. Algo-
rithm 1 presents the pseudo-code.

Algorithm 1 Algorithm for Max-Skill-D

1: Input: A,
−→
Q

2: Replace 1 and 0 in A to 0 and ε respectively

3: Construct system of linear inequalities A⊗
−→
S ≤

−→
Q

4: Compute principal solution vector
−→
S using Equation 9

5: return
−→
S

In particular, consider our running example and notice
that we can adapt the principal solution technique to form
the following inequalities, based on the aforementioned con-
straints.

su1 ≤ min (15) = 15 su2 ≤ min (15, 10) = 10

su3 ≤ min (10) = 10

Max becomes computationally much harder when two sided
error is considered. Exploration of two sided error for max
skill aggregation is deferred to future work.



Lemma 1. The principal solution vector is a valid solu-
tion to the system of inequalities for the max skill aggregation
problem Max.

Proof. (Sketch): Once we express the maximum skill ag-
gregation using the system of inequalities, the proof directly
follows from [7, 3].

Lemma 2. The principal solution vector minimizes the
reconstruction error for `2 for one sided error.

Proof. (sketch): The principal solution vector outputs a
feasible region for each variable (each variable corresponds
to a worker’s skill in the given domain). A detailed proof
in [8] shows that how the proposed solution minimizes `∞
norm. Extending it to `2 is trivial.

Time Complexity: The principal solution could be com-

puted by a single pass over the matrix A and
−→
Q . The run-

ning time is dominated by the dimension of matrix A which
is l × n. Therefore, the time complexity is O(nl).

5.2 Max-Skill-P
Next, we describe the probabilistic skill estimation under

Max. Akin to Section 4.2, we first translate the quality of
each completed task, i.e., qt as a pdf and intend to estimate
the skill pdf of each worker u, represented as su, while sat-
isfying the one-sided error constraints using `2. However,
unlike Sum, the skill aggregation function is now maximum
(i.e., Max), reflected by taking the maximum skill among the
participating workers.

To compute the joint probability distribution of two in-
dependent random variables under Max, one has to compute
the Max-Convolution [4] of two random variables, that we
formally define below. The joint distribution of M random
variables under Max could be computed by performing a se-
quence of M − 1 pairwise Max-Convolution. Consider Fig-
ure 1(b), where the joint pdf of two random variables under
Max skill aggregation is presented.

Definition 2 (Max-Convolution of Distributions).
Assume that f(x), g(x) are the pdfs of the two indepen-
dent random variables X, Y respectively. The pdf of the
random variable Max(X,Y ) (the maximum of the two ran-
dom variables) is the max convolution of the two pdfs:max ∗
({f, g})(x) = f(x)

∫ x

0
g(z) dz + g(x)

∫ x

0
f(z) dz.

The main challenge is to estimate the individual skill pdfs
of the workers as accurately as possible, such that, the dis-
tance between the obtained skills (based on Max-Convolution)
and the assigned quality is as small as possible. The opti-
mization problem exploits the same framework and is now
restated as,

minimize

√∑
t

(qt − (
−→
At ×max(su)))2

The constraints are to be set up such that the pdfs of
the workers satisfy the probability axioms, as well as one
sided constraints, akin to Section 4.2. Similar to the Sum
counterpart, we discretize the skill pdf of each worker using
w buckets and and assign a variable per worker per bucket
that we intend to estimate.

Similar to the sum problem, the optimization problem
gives rise to solving a polynomial of degree of n, if a task has

n number of workers. Unfortunately, solving the problem is
prohibitively expensive. Therefore, we design a hill climbing
based efficient heuristic algorithm.

Heuristic Algorithm: Algorithm for Max-Skill-P runs
is a greedy fashion and performs hill climbing with random
restarts. It is very similar with the algorithm for Sum-Skill-P
in flavor, except the fact that now it has to perform Max-
Convolution to compute the joint pdf of skill of the workers.
We omit the details for brevity. Our algorithm discovers the
global optima on Example 1 and produces the following 3
distributions, su1 = [0, 0, 1], su2 = [1, 0, 0], su3 = [0, 1, 0].

Complexity: The running time complexity is similar to
that of Sum-Skill-P.

6. DISCUSSION
Min Skill Aggregation: It is easy to see that the tech-

niques developed in Section 5 can easily be extended to
handle Min skill, should the application fit that aggregation
model. A well studied body of research, Min-Plus (or Trop-
ical) algebra [7] has been developed to study the algebraic
operations with the Min operator. The fundamental oper-
ations can be specified by the identities a ⊕ b = a + b and
a⊗ b = min{a, b}. Most results from Max-Plus algebra are
directly applicable just by switching the Max operator with
Min. Specifically, we can rewrite Equation 9 specifying the
principal solution as,

xi =
(
MinAi,j ⊗ (bi)

−1)−1
= Max{bi ⊗ a−1

ij } (10)

The only change required in Algorithm 1 is to replace Equa-
tion 9 with 10.

Similarly, the probabilistic skill learning algorithms could
be adapted by deconvolving Min-functions [4].

Complex Skill Aggregations: In our paper, we have
initiated the first ever formal treatment to estimate the skills
of the workers for team based tasks. Our chosen functions
share some attractive properties: (a) They are representa-
tive of the skill aggregation functions commonly used in a
number of real-world team based tasks [27, 13]. (b) They
are supported by a well developed body of research (such
as linear, max-plus algebra, or min-algebra) that allows the
development of efficient polynomial time algorithms.

Our proposed optimization framework could be used to
represent any arbitrary skill aggregation function that takes
the skills of a set of workers and outputs a scalar score for the
team. Specifically, the optimization objective for a complex
skill aggregation function f can be formulated as:

minimize E(
−→
Q, f(A,

−→
S ))

subject to qt − f(
−→
At, s

u) ≥ 0, ∀u ∈ Gt

lb ≤ su ≤ ub

(11)

Under certain constraints (such as convexity), such a for-
mulation might even be solved efficiently. Investigation into
their (in)tractability and design of efficient solutions remain
open problems at this point.

Independence and Collaboration: The independence
assumption is indeed true in several applications, such as
online multi-party games and sentence translation by fans
(fan-subbing). It also allows us designing efficient solutions.

Our deterministic approaches could be extended to in-
corporate collaborations, as long as, the aggregation func-
tions are linearly expressible. Similarly, our probabilistic



algorithms could also be adapted by representing worker-
dependence with higher order histograms [26] to compute
their joint distributions.

In team productivity literature [27, 13], it is known that
some individuals act as “multipliers” or “enablers”. Simi-
larly, affinity between team members also plays a role. We
describe two popular models next.
(1) Additive Factor Model [27, 13]: The skill of a worker
is composed of two factors; a baseline skill that the worker
exhibits in all tasks, and a constant factor that depends on
the team and the task. Thus the same worker could have
different levels of performance for each task. If the addi-
tive factor is computed through a known function, then it
could be added into the model as a constant factor with a
unit weight. The problem then becomes finding the base-
line skills of the workers, and our algorithms are applica-
ble. (2) Pairwise Affinity Model [27, 13]: Alternatively,
the skill of a worker in a task could be computed as the
sum of the individual worker and the pairwise affinity that
she has with other members of the team. Our model could
be extended to handle this scenario through “linearization”,
where, we add a new variable for each pairwise interaction.
Under this, our proposed deterministic algorithms extend.
(3) Non-Linear Affinity Models: Notice that both the mod-
els described above could be described by a linear function.
It is possible to design non-linear affinity functions (such as
based on a clique). These scenarios fall under the broader
category of complex aggregation functions.

7. EXPERIMENTAL EVALUATION
Our development and test environment uses Python 2.7

on a Linux Ubuntu 14.04 machine, with Intel Core i5 2.3
GHz processor and a 6-GB RAM. We use an existing convex
optimization package 3 for solving Sum-Skill. All numbers
are presented as the average of three runs.

7.1 Dataset Descriptions
1) NBA: We collected 317, 371 tuples of NBA scores from

1991-2004 regular season. We pre-process this dataset and
generate the worker to task assignment matrix A by match-
ing players with games. We consider two independent skill
dimensions, i) Number of points, ii) Number of Assists where
the team skill is the computed by the additive skill model.
Our final dataset contains 21000 matches and 1200 players.

Ground truth in NBA dataset: The ground truth consists
of the number of points and the number of assists of a player
played in a particular game. If a player has played several
games (which is really the case always), this gives rise to a
distribution, as opposed to a single skill value per worker.

2) DBLP: We use a subset of DBLP4 considering the
papers that are published from year 2000. We primarily
consider authors who publish in database conferences (SIG-
MOD, VLDB, CIKM, ICDE, EDBT), in the area of query
processing. Each publication is a completed task that is
undertaken by a set of authors; we consider the number of
citations as its quality. This dataset consists of 20123 pub-
lications and 22700 unique authors.

Ground truth in DBLP dataset: Unlike the NBA dataset,
there is no ground truth available per worker (i.e., no truth is
known about an author’s expertise). Therefore, we neither
have a skill pdf nor a single skill value per worker. As we

3http://cvxopt.org/userguide/solvers.html
4http://dblp.uni-trier.de/xml/

describe in Section 7.3, we take up a cross-validation type
of approach for evaluation here.

3) Synthetic Dataset: We generate a synthetic dataset
for evaluating the scalability of our proposed solutions for
the deterministic and probabilistic algorithms. The total
number of workers varies between 5000 and 20000 and the
total number of tasks varies between 5000 and 250000. The
quality vector is an uniform distribution [0− 1].

7.2 Implemented Algorithms
Since no prior work has studied the skill estimation prob-

lem for team based tasks, we ourselves design multiple base-
line solutions for comparative evaluation.

7.2.1 Sum Skill
Deterministic Algorithms:
(1) BL-Sum-Regression-D: We treat the problem as a mul-

tivariate regression problem, with the presence or absence of
each individual in a team as the independent variables. The
quality of a completed task is the dependent variable. The
objective is to learn the co-efficients (skills) of the workers,
such that the `2 error between the estimated quality and
actual quality is minimized. This is equivalent to solving a

least squares regression problem that minimizes ‖A ×
−→
S −

−→
Q‖2. Notice that this baseline does not necessarily satisfy
the one sided error constraints.
(2) BL-Sum-Uniform-Avg-D: For each task with quality value
qt, we uniformly distribute the skill value among its con-
stituent workers. Thus, any worker u, who undertake t re-

ceives a skill score su = qt

|U′| , where |U ′| is the set of workers

who undertake t. The final skill of u is calculated by taking
the average of her received scores across all the tasks. This
baseline does not optimize the error value or satisfy the one
sided error constraints.
(3) BL-Sum-Uniform-Min-D: This baseline is similar to the
the previous one, except that we choose more conservative
assignment of skill for each worker such that the one sided
error constraints are fully satisfied. First, we uniformly dis-
tribute the obtained quality of each task among its con-
stituent workers. The final skill of u is calculated by taking
the minimum of her received scores across all the tasks she
has undertaken.
(4) Sum-Skill-D : Our proposed solution in Section 4.1 is
compared with the baseline solutions, whenever appropriate.

Probabilistic Algorithms: To the best of our knowl-
edge, there does not exist a regression based model which
treats the independent variables in a probabilistic manner.
(1) BL-Sum-Uniform-P: This algorithm is similar to
BL-Sum-Uniform-Avg-D, but produces a pdf per worker at
the end. For a task with quality qt, we uniformly distribute
qt among its constituent workers and generate a discrete pdf
per worker, after considering all the tasks she participated.
(2) Sum-Skill-P : Our proposed solution in Section 4.2 is
compared with the baseline solution, whenever appropriate.

7.2.2 Max-Skill
Deterministic Algorithms:

(1) BL-Max-D: In this baseline solution, we assume that the
quality of a task reflects the skill of only one of the con-
stituent workers. For each task, in step 1, we first choose a
worker uniformly at random and assign her skill su as the
quality of the task qt. Each of the remaining workers u′ who



undertook the same task receives a su
′

smaller than su, us-
ing a uniform random distribution. In step 2, finally these
obtained skills are averaged per worker to compute the final
skill value.
(2) Max-Skill-D : Our proposed solution in Section 5.1 is
compared with the baseline solution, whenever appropriate.

Probabilistic Algorithms:
(1) BL-MAX-P: This algorithm is designed in the same spirit
as that of BL-MAX-D. The step-1 of this algorithm is similar to
its deterministic counterpart; In step 2, instead of averaging
the skill of each worker, we generate a pdf.
(2) Max-Skill-P : Our proposed solution in Section 5.2 is
compared with the baseline solution, whenever appropriate.

7.3 Experimental Analyses Setup

7.3.1 Measures & Parameter Setup: Quality
Deterministic Scenario: We adopt a classical cross-

validation based set up [12] to evaluate our deterministic
algorithms. We divide the dataset in train and test and
perform 3-fold cross validation. In particular, each record
in a test set is a task that is undertaken by a set of workers.
For each such worker, we estimate their respective skill con-
sidering only the train dataset (those who do not appear in
train get a skill of 0). For each task in test set, the ground
truth (i.e., the true quality) is the associated quality value.
We compare the estimated quality of a task with that of the
ground truth for that task.

We compare and contrast different algorithms by pre-
senting average absolute error and normalized relative error.

Relative error is computed as

√∑
∀t et×et√∑
∀t qt×qt

. We present the

percentage of tasks in our test set which overestimates the
task quality (compared to the ground truth), thus violating
the one-sided error constraints (Section 3.2.1).

Probabilistic Scenario: For the probabilistic variant
of the NBA dataset, we compute the `2 error between the
estimated skill pdfs and that of the ground truth distributions.
We measure relative error over the test dataset (assuming
the evaluated quality of each task in the test set as ground
truth). We need to transform the estimated pdf of each
worker to a single value by computing expected skill, i.e.,
ExpectedSkill(u) =

∑
w(Pr(su = w) × w) and measuring

the `2 error between the actual quality and the expected
quality of the tasks.

We discretize the pdfs using w equi-width histograms (buck-
ets), where each bucket is a skill range. To compute the ex-
pected skill of a worker, we consider the upper limit of the
skill range per bucket: for example, if the pdf of a worker is
Pr([0− 5]) = .7, P r([5− 10]) = .3, then the expected skill is
.7× 5 + .3× 10 = .65.

Hill climbing algorithms have many parameters, w - #
buckets to approximate the equi-width pdfs, δ - the amount
by which we modify the pdfs in each step, and α - # failed
iteration for the convergence of the hill climbing algorithm.
Our default set up is w = 10, δ = 0.05, λ = 0.01 (one sided
error threshold), α = 1000, # random restarts=5.

7.4 Summary of Results
Quality Experiments: Our first set of results (consid-

ering relative error) strongly corroborate our hypothesis on
the underlying skill aggregation model for a given applica-
tion - i.e., NBA dataset follows Sum-Skill, whereas, DBLP
dataset follows Max-Skill. After this result, we present the

rest of the experiments by considering the most appropri-
ate dataset for it (i.e.,NBA for Sum, DBLP for Max). Our
deterministic algorithms demonstrate that we consistently
outperform all the baseline algorithms (including the regres-
sion based one) in minimizing the error value, as well as
consistently obeying the one sided error constraints. Same
observation holds for the probabilistic algorithms, where
Sum-Skill-P and Max-Skill-P significantly outperform their
respective baseline counterparts.

Scalability Experiments: For the deterministic sce-
nario, our results indicate that our proposed solutions are
scalable. Even when the task assignment matrix is very
large, they only take a few minutes to complete. Max-Skill-D
is more scalable than Sum-Skill-D. This is consistent with
our theoretical analyses in Section 5.1. For the probabilistic
scenario, the heuristic algorithms are more efficient than the
optimal variants and often converge within few minutes and
scale well. For lack of space, we only present a subset of
results. The presented results are representative.
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Figure 2: Quality and Scalability trade-off: Determinis-
tic/Probabilistic Models

Deterministic/Probabilistic Skill Models: To high-
light the tradeoffs between deterministic and probabilistic
models, we conduct three experiments. We generate a syn-
thetic dataset where each worker is associated with a skill
pdf where we vary the variance for a fixed task assignment
matrix. When the variance is low, then the workers are
more consistent in their performance across different tasks.
When the worker has high variance, her performance might
have high deviation from the expected value. The results in
Figure 2(a) and Figure 2(b) show that the deterministic vari-
ants are preferable for lower variance of worker’s skill, while
the probabilistic variants are preferable for higher variance.
In our third experiment, we calculate the runtime of our de-
terministic and probabilistic algorithms with varying task
size. Unsurprisingly, Figure 2(c) shows that deterministic
algorithms are more scalable than probabilistic algorithms.
This is quite expected as probabilistic algorithm takes longer
time to converge due to greater number of unknowns than
its deterministic counterparts.

7.5 Qualitative Experiments

7.5.1 Hypothesis Validation
In this set of experiments, we vary the number of tasks

and measure the average relative `2 error of both Sum-Skill



and Max-Skill based skill estimation algorithms using both
DBLP and NBA dataset. We present these results using
Sum-Skill-D and Max-Skill-D algorithms. Figures 3(a)
and 3(b) present the results which strongly corroborate our
hypothesis: i.e., NBA dataset follows Sum-Skill, ensuring
lower error compared to DBLP dataset. On the contrary,
Max-Skill is better estimated using DBLP dataset (with
smaller error compared to that of NBA). Clearly, in case of
Sum-Skill error remains low in NBA dataset, as the train-
ing size gets higher where as DBLP dataset did not show
any of this pattern. These results show that the formalized
skill aggregation functions are indeed appropriate to capture
real world applications.
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Figure 3: Experiments for hypothesis validation: Average
relative `2 error for Sum-Skill-D and Max-Skill-D considering
NBA and DBLP datasets, with varying # tasks. For Sum-Skill-D
, NBA has significantly lower error, and for Max-Skill-D DBLP
dataset outputs smaller relative error.

7.5.2 Sum-Skill
Here we vary the training dataset size to evaluate our

proposed algorithms Sum-Skill-D and Sum-Skill-P.
Normalized Error - Sum-Skill-D : Figure 4(a) presents

the results and clearly demonstrates that our proposed al-
gorithm consistently outperforms all the baseline solutions,
including the regression based baseline. The error decreases
with increasing number of tasks, which corroborates that
with increasing training set size, the skill estimation be-
comes more accurate.

One-sided Error Constraints - Sum-Skill-D : Fig-
ure 4(c) clearly demonstrates that our proposed algorithm
consistently outperforms the three other baselines in one
sided error constraints. BL-Sum-Uniform-Avg-D heavily over-
estimates workers’ skill. BL-Sum-Uniform-Min-D is the best
baseline, as it is designed to obey such constraints. Same
observation holds for Sum-Skill-P and BL-Sum-Uniform-P.

Normalized Error - Sum-Skill-P : We present the nor-
malized error of our proposed solution with that of the base-
line algorithm, BL-Sum-Uniform-P. Figure 4(b) corroborates
that Sum-Skill-P is significantly more accurate.

Normalized Error -Sum-Skill-D vs Sum-Skill-P : Fig-
ure 4(d) presents the comparison between them. Although
Sum-Skill-D performs better, Sum-Skill-P provides more
granular information on worker’s skill.

7.5.3 Max-Skill
We use the DLBP dataset to perform further experiments

on Max-Skill. We vary the number of tasks and measure
the average absolute `2 error.

Figure 5(a) shows that Max-Skill-D outperforms BL-Max-D
algorithm. With increasing training set, the algorithm learns
better, hence the error of Max-Skill-D decreases. Figure 5(b)
shows that Max-Skill-P outperforms the probabilistic base-
line BL-Max-P consistently. However, error varies with the

task size using Max-Skill-P , because the algorithm cannot
always find the global optima. Figure 5(c) shows the com-
parison between Max-Skill-D and Max-Skill-P. We observe
that Max-Skill-D performs better for larger training data.
However, Max-Skill-P provides the distribution of worker
skill which can be of importance for a particular application.

7.6 Scalability Experiments

7.6.1 Deterministic Estimation: Sum and Max Skill
For the deterministic scenario, we vary number of work-

ers, tasks, workers/task, and domains. Our run-time exper-
iments have the following default settings: #workers=5000,
#tasks=10000, #workers/task=10, #domains= 1.
Varying Number of Tasks: We vary the number of tasks
in this experiment. Figure 6(a) shows that both Sum-Skill-D
and Max-Skill-D scale well with increasing number of tasks.
Quite unsurprisingly, the latter outperforms the former al-
gorithm scalability-wise. This result is expected and is con-
sistent with our theoretical analyses of the algorithms.
Varying Number of Workers: Our observation here is
akin to the previous experiment. Both algorithms scale well.
Figure 6(b) shows the result.
Varying Number of (Workers/Task): The objective of
this experiment is to observe the influence of the number
of workers per task in the running time analyses. From fig-
ure 6(c), it is apparent that while Max-Skill-D scales very
well due to its linear time complexity. However, Sum-Skill-D
also performs reasonably with larger data size.
Varying Number of Domains: In this experiment, we
vary number of domains and measure the scalability of the
proposed algorithms. Figure 6(d) presents the results and
demonstrates that our proposed solutions are scalable.

7.6.2 Probabilistic Estimation: Sum and Max Skill
For the probabilistic skill, for brevity, we only present a

subset of results. As stated before, we vary the parameters
that influence the efficiency of the hill climbing algorithms.

Varying w - Max: As we increase the number of skill
buckets, the number of unknown to solve increases, hence
it takes longer to converge. Figure 7(a) demonstrates that
Max-Skill-P scales well with varying w for five different size
datasets. Sum-Skill-P takes about 60% more time than
Max-Skill-P as the joint pdf has larger ranges (e.g., two
pdfs in the range of [0−15] gives a joint pdf between [0−30]
for sum, whereas, it is still [0−15] for max) for sum, thereby
requiring more computations. Although efficiency decreases
with increasing w, but we get the distribution of worker skill
with more granularity.

Varying δ - Sum: With higher step size (δ) in the hill
climbing, the algorithm converges faster but with lower ac-
curacy. Sum-Skill-P results are presented in Figure 7(b).
Max-Skill-P has similar trend, but takes about 60% less
time. We omit the chart for brevity.

Varying # failed iterations α - Sum: This parameter
α dictates after how many failed iterations a random restart
takes place inside the hill climbing algorithms. Figure 7(c)
shows that our solution scales well with increasing α. As
usual, Max-Skill-P takes about 60% less time always.

Parameter Tuning: This is evident from Figure 7(a), 7(b)
and 7(c) that with the increase of w and α and decrease of
δ, latency will be higher. However, high value of w and α
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Figure 4: Experiments to validate Sum-Skill aggregation: These results clearly demonstrate the our solutions consistently out-
perform the baseline for both the measures we present in the Y -axis. The underlying dataset that is used is NBA.
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Figure 5: Experiments to validate Max-Skill aggregation : In these experiments, we compute the average error by varying the
number of tasks. Clearly, our proposed solutions Max-Skill-D outperforms the baseline algorithm BL-Max-D and Max-Skill-P outperforms
BL-Max-P. The underlying dataset is DBLP.

and low value of δ ensure better results in terms of qual-
ity. Additionally, with higher # random restart, the solu-
tions likely get better qualitatively, although the running
time also increases (1.1 minute per restart on an average).
With smaller λ (one sided error threshold), we get solutions
that better satisfy the one-sided error constraint, but that
improvement comes with an increasing computation time.
Clearly, we need to consider trade-offs while choosing these
parameter values. Empirically, with w = 10 , δ = 0.05,
λ = 0.01, α = 1000, # random restarts=5, we get the best
trade-off between quality and scalability.

8. RELATED WORK
While no prior work has solved skill estimation problem

for team based tasks, we present existing work that are tan-
gentially related.

Team Formation: A tangential problem is the team for-
mation problem [23, 30]. Formation of team considering a
social network is first studied in [23, 1, 2]. The objective
of these body of work is to form a team of experts to solve
a particular task, which assumes that the skill of the ex-
perts are known and given as inputs. On the contrary, we
intend to estimate the skill of the workers by investigating
the quality of the completed tasks they have undertaken.
No prior work, however, studies any formalism or solution
to estimate worker’s skill for team based tasks.

Skill Estimation in Micro-task based Crowdsourc-
ing: Crowdsourcing has gained significant traction in the
research community for solving problems, such as, image
tagging, annotating labels, or looking up addresses of people
[21]. These applications are primarily designed on micro-
tasks, where the task is completed by an individual at its
entirety (e.g., a worker tags an image all by herself). While
skill estimation or evaluating the quality of the workers in

crowdsourcing has gained recent research attention [14, 22,
17], the focus is entirely on micro-task based applications.
We however consider team based tasks [20, 28].

Disaggregation Methods: Disaggregation methods are
studied to dis-aggregate weather data to find hourly rain-
fall, temperature, or wind speed from daily maxima or min-
ima [10, 11]. These methods do not lend any extension to
solve our problem either, as their dis-aggregation happens
“locally”, i.e., per day, as opposed to our problem, where a
worker can undertake many tasks and the skill estimation
must consider all of them to minimize the error.

Regression Based Models: The Sum-skill problem bears
resemblance with the least square regression [12] that we
consider as a baseline, without having to satisfy the one-
sided error constraints. Quantile regression [12] models the
relationship between the independent variables and the con-
ditional quantile of the dependent variable. Maximum quan-
tile regression will learn the relationship between the maxi-
mum value of the dependent variable given the independent
variables. Unlike that, our Max aggregation problem intends
to learn the dependent variable which is the maximum of the
independent variables. These are fundamentally different.

9. CONCLUSION
We initiate the study of estimating skill of the individual

workers in team based tasks for various applications. We
formalize it as an optimization problem considering multiple
skill aggregation functions, where skill of a worker is either
deterministic or a probability distribution. We propose prin-
cipled solutions to all the studied variants of the problem and
provide in-depth analyses. We run a comprehensive set of
experiments considering two real world datasets that demon-
strate the effectiveness of our proposed skill estimation algo-
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Figure 6: Experiments to validate the scalability of the deterministic skill estimation algorithms: The following default
settings is considered: # workers=5000, # tasks=10000, # workers/task=10, # domains= 1. These results clearly demonstrate that
our proposed solutions are scalable.
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Figure 7: Experiments to validate the scalability of the probabilistic skill estimation algorithms: default settings: #
domains=1, n = 1000, w = 3, δ = 0.2, # failed iterations=200, # random restarts=5; despite having to solve a polynomial of degree 20,
our solutions scale well and terminate within a few minutes. We only present a subset of results for brevity.

rithms. We also conduct large scale synthetic experiments
to validate the scalability of our proposed solutions.

Acknowledgment
The work of Habibur Rahman, Saravanan Thirumuruganathan
and Gautam Das was partially supported by National Sci-
ence Foundation under grants 0915834, 1018865, Army Re-
search Office under grant W911NF-15-1-0020 and a grant
from Microsoft Research.

References
[1] A. Anagnostopoulos et al. Power in unity: forming teams in

large-scale community systems. In CIKM, 2010.

[2] A. Anagnostopoulos et al. Online team formation in social
networks. In WWW, 2012.

[3] M. H. Andersen. Max-plus algebra: Properties and applica-
tions. 2011.

[4] B. Arai et al. Anytime measures for top-k algorithms on
exact and fuzzy data sets. The VLDB Journal, 2009.

[5] A. Björck. Numerical methods for least squares problems.
Siam, 1996.

[6] H. Buhrman et al. One-sided versus two-sided error in prob-
abilistic computation. In STACS 99, 1999.

[7] P. Butkovic. Max-linear systems: theory and algorithms.
Springer, 2010.
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