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ABSTRACT
The prevalence of social media has sparked novel adver-
tising models, vastly different from the traditional keyword
based bidding model adopted by search engines. One such
model is topic based advertising, popular with micro-blogging
sites. Instead of bidding on keywords, the approach is based
on bidding on topics, with the winning bid allowed to dis-
seminate messages to users interested in the specific topic.

Naturally topics have varying costs depending on multiple
factors (e.g., how popular or prevalent they are). Similarly
users in a micro-blogging site have diverse interests. As-
suming one wishes to disseminate a message to a set V of
users interested in a specific topic, a question arises whether
it is possible to disseminate the same message by bidding
on a set of topics that collectively reach the same users in V
albeit at a cheaper cost.

In this paper, we show how an alternative set of topics R
with a lower cost can be identified to target (most) users in
V. Two approximation algorithms are presented to address
the problem with strong bounds. We propose techniques
based on pruning and approximate calculations to speed up
the execution of these algorithms while maintaining guaran-
teed approximation bounds. Theoretical analysis and exten-
sive quantitative and qualitative experiments over real-world
data sets at realistic scale containing millions of users and
topics demonstrate the effectiveness of our approach.

Keywords
Micro-blog Advertising, Topic-based targeting, Alternate top-
ics

1. INTRODUCTION
Online advertising is a multi-billion dollar business and

has attracted a lot of attention among many advertisers all
over the world. Online display ads are ubiquitous (e.g. pop-
ular on prevalent sites such as CNN, BBC, Reuters, blogs,
search engines’ result pages, etc.). Several methods are uti-
lized to deliver ads, the most popular approach is keyword

bidding. Popular web portals and search engines have cre-
ated platforms (e.g., Google AdWords) to display online ads
based on a keyword bidding methodology. Typically multi-
ple people may bid on a keyword and an auction is held for
each keyword. The advertiser with the maximum bid wins
the auction and its ad is shown to users who search for that
keyword.

Social networks had expansive growth over the last decade.
Facebook with over 1 billion users and Twitter with half a
billion registered users are just two examples of successful
social platforms hosting billions of messages posted every
week. As users spend considerable time on social networks,
naturally advertisers started in the last few years focusing on
advertising opportunities on such platforms.

Since time spent on social networks does not involve in-
formation search (keywords queries) but information pro-
duction and consumption (generating posts, reading posts
from social connections, and interacting with social connec-
tions), new models of advertising emerged. For example,
recently Twitter introduced a new advertising platform [30]
that provides advertisers several options for user targeting.
One of them is to design advertising campaigns on specific
topics (topic-based advertising). Utilizing this feature, an
advertiser chooses a topic, places a bid value, and provides
a tweet (called a “promoted tweet”) to the system. If the bid
is granted, the tweet provided is shown to a set of related
users. In other words, the tweet is shown to a user (appears
in user’s timeline) if the chosen topic is relevant to that user.
We say that these users are targeted by the chosen topic.
Moreover, we refer to this set of users, as the target set of
the topic. Similarly Facebook utilizes promoted stories with
overall functionality related to that of promoted tweets.

Since social platforms have hundreds of millions of users,
the type of topics in which these users produce or consume
contents is expected to be highly diverse. In a micro-blogging
platform for example, one would typically produce content
on topics one knows well (maybe profess) and also consume
content in topics one is interested in, by following other
users who are producers of contents of such topics. Thus,

1



if a user u is a producer (or consumer) of topics such as
“soccer” and “computer science”, we may target u by adver-
tising on either “soccer” or “computer science”. It is evident
that there is not just a single way to target a user, but indeed,
several ways exist utilizing different topics that are relevant
to u.

Different topics have different costs however (exactly as
different keywords have varying costs in the keyword based
advertising model). Given that a user can be targeted possi-
bly by multiple topics, an interesting question to ask is the
following: Given a topic t with a target set St (the set of
users targeted by t), is it possible to reach the same target set
St by bidding on topics other than t in a more economical
way? If that is possible and the new topics are less expensive
compared to t, obviously this would be beneficial. We aim
to identify a set of less expensive topics that target approx-
imately (for a quantitatively measurable notion of approxi-
mation) the same set of users as the target set of t (i.e., they
have approximately the same target sets). In doing so, we are
interested to avoid targeting users outside St as that would
not be beneficial. In particular we focus on a tight targeting
model. Under this model, we aim to locate a set of topics
with a target set as close as possible to t’s target set. The key
property is to prevent targeting users who are not in t’s target
set (e.g., users for whom t is not relevant). We penalize the
method to avoid spamming these users. Therefore, a penalty
cost (according to a penalty cost function) is associated with
any instance of targeting a user outside t’s target set. We aim
to identify an alternative topic set R (obviously not includ-
ing t) such that the number of users in t’s target set that are
targeted by at least one topic in R is maximized provided
that the sum of the costs of topics in R and the sum of the
penalty costs is not greater than a maximum budget.

The problem of identifying alternative topics is inspired
by Twitter and Facebook advertising platforms. However,
we would like to emphasize that as the details of these social
advertising platforms are not known to public, the problem
we discuss in this paper is a general problem and is not de-
signed for or based on any specific social media platform
including Twitter and Facebook.

Under this model, we show that if the penalty cost func-
tion is non-decreasing and convex, we identify solutions and
propose algorithms with guaranteed approximation bounds
(Section 2). To scale the proposed algorithms to problems
of arbitrary size, in Section 3.1 we propose various prun-
ing techniques that enable them to work over much larger
datasets. This is done, by pruning the datasets to a manage-
able size in a preprocessing step in such a way that the al-
gorithms can be executed on the reduced data while offering
approximation guarantees on the larger data sets. Section 3.2
shows that we can modify the proposed algorithms by relax-
ing the exact calculations to improve the performance of the
proposed algorithms while still maintaining good approxi-
mation bounds.

As we have access to a large real dataset from Twitter con-

taining about 4.5 million topics that target approximately 14
million distinct users, we evaluate all algorithms and pro-
posed techniques on this dataset. Section 4 explains the sys-
tem design. Section 5 reports our quantitative and qualita-
tive findings demonstrating the overall efficiency and practi-
cal utility of our proposed solutions. An overview of related
works is presented in Section 6, followed by Section 7 which
concludes our discussion.

Our techniques create a win-win situation for both adver-
tisers and the advertising platforms (e.g., Twitter and Face-
book). By providing more options (i.e., topics with approx-
imately the same audience) for each advertiser to target, we
prevent the situation where a single popular topic (that is
very expensive) exists alongside several cheaper topics that
no one bids on. Therefore by utilizing our techniques, more
advertisers afford to target their desirable audience. Hence
the revenue of the advertising platform may significantly in-
crease (since more advertisers pay) while advertisers also
obtain more savings per advertisement.

2. THE TARGETING PROBLEM
The online advertising platform offered by micro-blogging

services enables advertisers to target users based on topics.
The cost of advertising on different topics is, clearly, not the
same. Some topics are costly since they are popular and at-
tract the attention of advertisers, while some other topics are
cheaper. On the other hand, a user may be targeted by many
topics. If a user belongs to the target set of several topics,
advertising on any of these topics will target this user.

Let U represent a set of users and T represent a set of
topics. For a topic t ∈ T , let St represent the target set
of t. The target set St is the set of users who are targeted
by bidding on topic t. Section 4 describes some approaches
to identify the target sets in different social platforms. We
note that the sets U , T , and the target sets St are inputs of
the problem and can be computed by any means one prefers
without changing any part of the problem and the algorithms
proposed in this paper.

Assume one wishes to advertise on topic t with a budget
of B at hand. Let the cost of advertising on t, denoted by
Ct, be higher than the budget (i.e., Ct > B). In such a
situation, one cannot advertise on t as one does not have
enough budget to do so. Given that users can be targeted
by multiple topics, a natural question arises. Is it possible
to determine alternative topics to target a set of users that
is as close to St as possible, without exceeding the budget?
In particular, we aim to (1) target as many users in St as
possible and (2) avoid targeting users outside St.

More formally, we associate a penalty cost when target-
ing users outside St (unwanted targeting). This penalty, that
aids to avoid spamming these users, depends on the number
of users targeted outside St, and the number of times each
of these users is targeted. Let u 6∈ St; assume u is targeted
xu times. We denote the penalty cost as f(xu). Such cost
depends on the number of times u is targeted. The goal of
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this cost is to capture the intuition that if a user does not be-
long to the target set of t, it is not supposed to be targeted
for content related to t. Therefore, each time u is targeted
incorrectly, we associate a penalty. This penalty increases as
xu increases. In particular we associate a penalty with a pos-
itive marginal increase (i.e., an increase following a convex
trend) when the number of times a user is targeted increases.
We utilize a function f(xu) that is (1) non-decreasing (the
penalty cost does not decrease as a function of xu), and (2)
convex (the marginal cost does not decrease as a function of
xu). The penalty cost function captures the intuition that the
penalty incurred when targeting a single user u, say, three
times when u 6∈ St for a topic t is higher than that of tar-
geting three users not in St for a topic t only once. A non-
decreasing convex function is appropriate to capture this be-
havior. Examples of such functions follow:

• f(xu) = a × xu for a non-negative constant a. This
linear function is utilized for the scenarios where we
face a fixed penalty for any instance of targeting a user
incorrectly.

• f(xu) = xau for a non-negative constant a. This poly-
nomial function is utilized when the marginal penalty
cost increases when a user is targeted incorrectly mul-
tiple times.

• f(xu) = axu for a non-negative constant a: an expo-
nential penalty function to model scenarios where we
want to apply a harsh increase in marginal penalty cost
when we target a user several times incorrectly.

We aim to maximize the number of users targeted in St with
the lowest cost possible.

Problem 1. Let T be a set of topics, t be a specific topic,
St be the target set of topic t, and B be the budget. Let
f(xu) be the penalty cost for each user where xu determines
the number of times that the user u not in St is targeted.
Identify a set R ⊆ T − {t} to maximize

|SR ∩ St|

subject to CR+C ′R ≤ B where SR =
⋃
r∈R

Sr is the union of

the target set of all topics in R, CR =
∑
r∈R

Cr is the cost of

targeting all topics in R, C ′R =
∑

u∈SR−St

f(xu) is the total

penalty cost, and for any user u outside St (u ∈ SR − St),
xu = |{r|r ∈ R, u ∈ Sr}| is the number of times u is
targeted incorrectly (the number of topics inR that u belongs
to their target set).

A reduction from the Set Cover problem shows that Prob-
lem 1 is NP-hard even in a very simple case where there is
no penalty cost and the cost of targeting each topic is 1. We
present two algorithms to address Problem 1 and identify set
R. Section 2.1 explains TG, a faster algorithm that provides
a 1− 1/

√
e approximation factor. Section 2.2 presents TG3

that provides a tighter bound of 1− 1/e.

2.1 The Tight Greedy algorithm (TG)
Let t be the given topic and coverage of any set A ⊆ T be

the number of users that are targeted in set St when advertis-
ing on topics in A. Thus, the coverage of set A is |SA ∩ St|
where SA is the union of the target set of all topics inA. The
main idea in TG is (1) to identify a set of topics R1 by iter-
atively adding the topic t′ achieving the maximum ratio of
marginal coverage over marginal cost (

|SR1∪{t′}∩St|−|SR1
∩St|

Ct′+C
′
R1∪{t′}

−C′R1

)

as long as CR1∪{t′} + C ′R1∪{t′} ≤ B, (2) to identify a topic
q ∈ T with the maximum coverage (i.e., |Sq ∩St|) such that
Cq + C ′q ≤ B, and (3) to report the set with the maximum
coverage, among R1 and {q}, as the set R. The pseudo code
of TG is presented as Algorithm 1.

Algorithm 1: The Tight Greedy algorithm (TG) for al-
ternative topic set identification

Input: t: the original topic,
T : the set of topics (not including t),
U : the set of users,
St′ : the target set of any arbitrary topic t′,
Ct′ : the cost of targeting any arbitrary topic t′,
C ′t′ : the penalty cost of any topic t′,
B: budget
Output: R∗: a subset of topics

1 q∗ = argmax
q∈T
|St ∩ Sq| s.t. Cq + C ′q ≤ B

2 R1 = {}
3 while T is not empty do
4 t∗ = argmax

t′∈T

|SR1∪{t′}∩St|−|SR1
∩St|

Ct′+C
′
R1∪{t′}

−C′R1

5 if CR1∪{t′} + C ′R1∪{t′} ≤ B then
6 R1 = R1 ∪ {t∗}
7 T = T − {t∗}
8 return R∗ = arg max

R∈{{q∗},R1}
|SR ∩ St|

As Algorithm 1 shows our approach first identifies a set
R1 created by greedily adding the best available topic; sec-
ond it identifies the topic q∗ with maximum coverage; and
finally it compares the coverage of these two options to iden-
tify the alternative topic set. A simpler algorithm that just
identifies the set R1 and reports it as the alternative topic set
(we call it simpleGreedy) leads to arbitrarily bad approxima-
tion results as the following example clarifies.

Example 1. Assume the original topic is t with a target
set of St = {u1, u2, · · · , un} and a very high cost. Suppose
there exist two topics t1 and t2. Topic t1 has a target set of
St1 = {u1} and a cost of Ct1 = 1. Topic t2 has a target set
of St2 = {u2, u3, · · · , un} and a cost of Ct2 = 2n. More-
over, the budget is B = 2n. The simpleGreedy algorithm
reports {t1} as the alternative set with a coverage of 1, while
the optimal answer is {t2} with a coverage of n − 1. Thus,
the approximation factor in this example is 1

n−1 . Clearly
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the approximation factor approaches 0 when n approaches
infinity.

By comparing the set R1 with the optimal topic q∗, we
show that TG can lead to an approximation bound of 1 −
1/
√
e.

THEOREM 1. Utilizing any non-decreasing convex penalty
function f(x) in Problem 1 (i.e., ∂f

∂x ≥ 0 and ∂2f
∂2x ≥ 0),

algorithm TG identifies an alternative topic set with an ap-
proximation factor of 1− 1/

√
e.

PROOF. Refer to Appendix A for a complete proof.

THEOREM 2. The run time complexity of TG isO(|T |2×
|U |) where |T | is the number of topics and |U | is the number
of users.

PROOF. Line 1 takesO(|T |×|U |) time since we measure
the coverage of each topic; there are |T | topics and calculat-
ing the coverage takes O(|U |) (note that the maximum size
of a target set S can be |U |).

The while loop runs for O(|T |) iterations since in each
iteration we remove exactly one topic from T and there are
|T | topics. In each iteration, we calculate the marginal in-
crease in coverage and cost. This calculation takes O(|U |)
for each topic. Hence, line 4 takes O(|T | × |U |). The cal-
culations in lines 5-7 takes O(|T |). Thus, The while loop in
lines 3-7 takes O(|T |2 × |U |).

Overall, the run time complexity of TG isO(|T |2×|U |).

2.2 The Tight Greedy algorithm on a basis of 3
(TG3)

As Theorem 1 suggests the approximation bound of TG is
1 − 1/

√
e. We can improve this bound utilizing algorithm

TG3. The intuition in TG3 is to consider all sets of size
3, expand these sets greedily, and identify the set with the
highest coverage. The algorithm TG3 (1) locates a subset
R1 of size not greater than 3 with maximum coverage such
that CR1 + C ′R1

≤ B, (2) locates sets R2 that are created
by iteratively adding topic t′ achieving the maximum ratio
of marginal coverage over marginal cost to any initial set of
size 3 as long as the sum of the total cost and the total penalty
cost does not exceed the budget B, and (3) reports the set
with the highest coverage, among R1 and all R2 sets, as the
set R. The pseudo code of TG3 is presented as Algorithm 2.

THEOREM 3. Utilizing any non-decreasing convex penalty
function f(x) in Problem 1 (i.e., ∂f∂x ≥ 0 and ∂2f

∂2x ≥ 0), al-
gorithm TG3 results in an approximation factor of 1− 1/e.

PROOF. Refer to Appendix B for a complete proof.

THEOREM 4. The run time complexity of TG3 isO(|T |5×
|U |) where |T | is the number of topics and |U | is the number
of users.

PROOF. To identify R1 we need to compute the coverage
for any subset T with a size at most 3. There are O(|T |3)

subsets and for each subset it takes O(|U |) to compute the
coverage. Hence identifying R1 takes O(|T |3 × |U |).

To identify R2, we need to expand all subsets of T of
size 3 using the while loop. There are O(|T |3) subsets. For
each subset, the while loop runs for O(|T |) iterations. Each
iteration evaluates all topics in Ttemp that takes O(|T | ×
|U |). Hence the second part of the algorithm (identifying
R2) takes O(|T |3 × |T | × |T | × |U |) = O(|T |5 × |U |).

Therefore, the run time complexity of TG3 is O(|T |5 ×
|U |).

Algorithm 2: The Tight Greedy algorithm on a basis of
3 (TG3) to identify an alternative topic set

Input: t: the original topic,
T : the set of topics (not including t),
U : the set of users,
St′ : the target set of any arbitrary topic t′,
Ct′ : the cost of targeting any arbitrary topic t′,
C ′t′ : the penalty cost of any topic t′,
B: budget
Output: R: a subset of topics

1 R1 = arg max
X⊆T & |X|≤3 & CX+C′X≤B

|SX ∩ St|

2 R2 = ∅
3 foreach X ⊆ T s. t. |X| = 3 and CX + C ′X ≤ B do
4 J = X
5 Ttemp = T −X
6 while |Ttemp| > 0 do
7 Select t′ ∈ Ttemp maximizing

|SJ∪{t′}∩St|−|SJ∩St|
Ct′+C

′
J∪{t′}−C

′
J

8 if CJ∪{t′} + C ′J∪{t′} ≤ B then
9 J = J ∪ {t′}

10 Ttemp = Ttemp − {t′}
11 if |SJ ∩ St| > |SR2 ∩ St| then
12 R2 = J

13 if |SR1
∩ St| > |SR2

∩ St| then
14 return R1

15 else
16 return R2

3. SPEEDING UP THE ALGORITHMS
Theorems 2 and 4 imply that algorithms TG and TG3 may

not be efficient on large datasets with millions of users and
topics. In this section, we propose techniques to speedup
the algorithms with guaranteed approximation bounds. Sec-
tion 3.1 discusses two pruning techniques to reduce the num-
ber of topics under consideration and Section 3.2 explains
how we can reduce the run time of the algorithms by per-
forming approximate computations during the iterations of
algorithms TG and TG3 instead of the exact calculations.
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3.1 Pruning techniques
We first decrease the dimensionality of the problem while

maintaining approximation guarantees on the quality of the
alternative topic set R identified.

Real datasets contain millions of topics. Considering all
of these topics is the main source of time complexity in algo-
rithms TG and TG3. A majority of these topics however, are
unrelated to the original topic t; i.e., there exists little over-
lap between the target set of these topics and the target set
of the original topic t. Such unrelated topics are not going
to contribute to the alternative topic set R. Thus removing
them early on, can significantly decrease the dimensionality
of the problem and the run time of the algorithms. Such re-
moval however has to take place without impacting the over-
all quality of the final results.

We propose two techniques that significantly speed up al-
gorithms TG and TG3 (as shown in Section 5) while main-
taining approximation guarantees.

3.1.1 Coverage-based Pruning technique (CP)
In the first technique, (named CP) we prune topics based

on their coverage. The coverage of a topic q (denoted by
Wq) is the number of users, belonging to the target set of the
original topic t, that q targets; i.e., Wq = |Sq ∩ St|. Topics
with low coverage would be withdrawn from consideration.

Algorithm 3: Coverage-based Pruning technique (CP)

1 Wmax = max
q∈T

Wq

2 for Topic q in T do
3 if Wq < θ ×Wmax then
4 Remove q from T

In Algorithm 3, we refer to θ as the pruning fraction. The
value of θ defines a trade-off between the run time of the
algorithm and the accuracy of the results, with a higher θ
leading to more accurate outcomes.

THEOREM 5. The CP technique introduces a (1−θB/C̃min)
approximation factor where θ is the pruning fraction, B is
the budget, and C̃min is the min total cost for any topic; i.e.,
C̃min = min

q∈T
Cq + C ′q . The value of C ′q is the penalty cost

where q is the only topic we choose.

PROOF. Refer to Appendix C.

COROLLARY 1. Utilizing the CP technique with algorithms
TG and TG3, respectively, yields a factor (1 − 1/

√
e)(1 −

θB
Cmin

) and a factor (1− 1/e)(1− θB
Cmin

) approximation al-
gorithms.

3.1.2 Ratio-based Pruning technique (RP)
Besides coverage, the cost of the topics also play an im-

portant role in building the final alternative topic set. In the

Algorithm 4: Ratio-based Pruning technique (RP)

1 r = max
q∈T

Wq/Cq

2 for Topic q in T do
3 if Wq/Cq < rθ then
4 Remove q from T

second pruning technique (called RP), we prune the topics
based on the ratio of their coverage over cost.

The pruning fraction θ introduces a trade-off between run
time and accuracy. The approximation bound of the RP tech-
nique is presented in Theorem 6.

THEOREM 6. Let q∗ represent the topic with the maxi-
mum ratio Wq∗

Cq∗
= r. The RP technique is a factor (1 −

θ B
Cq∗

Wq∗

Wmax
) approximation algorithm.

PROOF. Refer to Appendix D.

COROLLARY 2. Utilizing the RP technique with algorithm
TG and TG3, respectively, provides a factor (1−1/

√
e)(1−

θr B
Wmax

) and a factor (1− 1/e)(1− θr B
Wmax

) approxima-
tion algorithm.

Note that depending on the values of B, Wmax, C̃min,
and r, we can identify a value for θ that provides the desired
approximation guarantee.

3.2 Approximate calculations
Our second approach to reduce the run time of algorithms

TG and TG3 is to speed up the calculations these algorithms
perform. In each iteration, TG and TG3 evaluate all remain-
ing topics to identify an optimal topic t∗ with the maximum
value of marginal coverage over cost (denoted by MWq

MCq
for

a topic q). This optimal topic is utilized to expand the alter-
native topic set R. The idea is to locate a sub-optimal topic
in each iteration. In particular, for a value of α (0 < α ≤ 1),
we aim to locate a topic q such that MWq

MCq
≥ αMWt∗

MCt∗
where

MWq andMCq are, respectively, the marginal coverage and
the marginal cost of topic q at the current iteration.

In this section, we propose a technique to locate the sub-
optimal topics. We emphasize that any other algorithm that
identifies this sub-optimal topics can also be utilized.

3.2.1 APXCAL: The approximate calculation algo-
rithm

The following lemma forms the core of APXCAL.

LEMMA 1. Suppose MW i
q (MCiq) is the marginal cov-

erage (the marginal cost) of topic q ∈ T at iteration i of

algorithm TG or TG3. For any j > i,
MW i

q

MCi
q
≥ MW j

q

MCj
q

.

PROOF. Refer to Appendix A proof of Lemma 2.

Let MCC represent MWq

MCq
. Lemma 1 suggests that MCC

of q does not increase after the execution of any iteration.
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Thus, the MCC at iteration i (
MW i

q

MCi
q

) is an upper bound for
the values at any iteration j > i.

APXCAL starts by creating a max-heap utilizing the top-
ics in T (or T after the application of the pruning techniques

introduced) based on their initial MCC values (i.e.,
MW 0

q

MC0
q
=

Wq

Cq+C′0q
where C ′0q is the penalty cost when the only topic

chosen is q). To identify a sub-optimal topic at each itera-
tion, we retrieve the topic q∗ at the max location of the heap
(with a saved MCC value, m) and calculate its new MCC
value m′. If m′ ≥ αm, we select q∗ as the sub-optimal
topic of this iteration; otherwise, we update the MCC value
of q∗ and continue this process until a sub-optimal topic is
identified. Note that if m′ ≥ αm, q∗ is a sub-optimal topic.
To see this, assume at the current iteration, t∗ is the opti-
mal topic with an MCC value opt. Clearly opt ≤ m, hence
m′ ≥ αopt. The pseudo code of APXCAL is presented as
Algorithm 5.

Algorithm 5: APXCAL

1 while true do
2 q∗ ← max(heap)
3 m = q∗.MCC
4 m′ ← Calculate the new MCC of q∗

5 if m′ ≥ αm then
6 Remove q∗ from heap
7 return q∗

8 q∗.MCC = m′ and update heap

THEOREM 7. Utilizing APXCAL with TG results in an
approximation factor of (1− 1/

√
eα).

PROOF. Refer to Appendix A.

THEOREM 8. Utilizing APXCAL with TG3 results in an
approximation factor of (1− 1/eα).

PROOF. Refer to Appendix B.

We can further improve the run time of TG3 for the case
where α ≤ ln(2) by executing it on subsets of size 2 (In
Line 3 of Algorithm 2, change |X| = 3 to |X| = 2).

THEOREM 9. Utilizing APXCAL with α ≤ ln(2), a mod-
ified version of TG3 that runs on subsets of size 2 (instead of
size 3) results in an approximation factor of (1− 1/eα).

PROOF. Refer to Appendix B.

Note that the modified algorithm in Theorem 9 results in
the same approximation factor as the original TG3 but with
an improved run time complexity of O(|T |4 × |U |).

4. SYSTEM DESIGN
In the previous sections, we described efficient approx-

imation algorithms to identify alternative topic sets for a

given topic. In this section, we discuss the practical issues
that would be encountered incorporating our algorithms for
popular social media sites. Specifically, we discuss how to
identify the set of topics T and how to identify the target set
of each topic in different social platforms.

Identification of topic sets and users in a topic set for a
given social media site is a fundamental operation before our
algorithms could be applied. Given a topic t, there are mul-
tiple ways to define the set of users who comprise the target
set t. One possible categorization with economic justifica-
tion is based on the potential applications: (1) target sets
consisting of producers, or (2) target sets consisting of con-
sumers. Generally speaking, producers of a topic t are users
who generate messages related to topic t, and consumers of
topic t are users who follow messages related to t.

Targeting producers in advertising campaigns is popular-
ized by influencer based marketing techniques to increase
information spread and conduct viral marketing [19]. On the
other hand, there are scenarios in which one aims to target
consumers of a topic t directly (targeting end users instead
of targeting producers). In this case, the target set of a topic
would include the consumers of the topic.

There are numerous approaches to realize the target sets
for each topic t ∈ T . One simple approach is to consider
a popular keyword or tag in a message (e.g., hashtags in
tweets) as a topic and place all users generating messages
containing the keyword or the tag in the target set of the
topic (if we are targeting producers), or place all users fol-
lowing those messages in the target set of the topic (if we are
targeting consumers).

Another approach is to utilize machine learning techniques
to uncover what topics each user produces or consumes. That
would involve processing messages generated and followed
by each user in a classification framework. One other ap-
proach is to extract information from users’ profiles, groups
they join, or lists they are part of. As an example in Facebook
platform, many users post their interests in their profiles.
Clearly each interest is a topic and all users with that in-
terest constitute its consumer target set. In Twitter platform
one may utilize Twitter lists, as will be elaborated shortly, to
realize target sets. Since access to the Twitter platform was
available to us, in this paper we utilize Twitter lists to realize
target sets. We emphasize however that our entire proposal
is completely orthogonal to the specific technique utilized to
realize target sets. Any technique can be utilized and our
framework applies equally without any modification.

While keyword based approaches are generic to any social
media platform, it is possible to design more sophisticated
and customized mechanisms for specific platforms such as
Twitter. Twitter lists introduce a mechanism to enable user
(tweet) filtering based on user-defined topics. A list is, in
fact, a collection of users who share (according to the creator
of the list) a common characteristic. This characteristic is
typically disclosed by the list’s title. For example, a user can
create a list grouping twitter users “Lionel Messi”, “Cris-
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tiano Ronaldo”, “Andres Iniesta”, “Philipp Lahm”, “Ney-
mar”, etc., and name the list “soccer”. By restricting the
tweets displayed only to accounts belonging in the list “soc-
cer”, a user can easily see information produced only by
the members of the list and focus attention to tweets from
the specific accounts. Essentially such a list encompasses
producers (according to the list’s creator) of “soccer” and is
an easy way to focus attention to information generated by
soccer producers. Looking at the entire collection of twit-
ter lists, it is evident that it presents a crowd-sourced system
for tagging twitter users based on the topics they produce
contents in.

We utilize list names to identify topics. Starting from the
name of a list, a series of textual preprocessing steps such
as stemming, tokenization, stop word filtering, entity ex-
traction, and related word grouping utilizing WordNet and
Wikipedia is performed to extract a set of topics T .

For any topic t ∈ T , all users who belong to a list cor-
responding to topic t are identified as producers of t. Such
producers constitute the target set St. In the case we aim to
target consumers, identifying them for each topic can be de-
termined utilizing the producers and the social connections
between users. The basic premise is that if a user u follows
a user v, who is known to be a producer of topic t, then u is
a consumer of topic t. Thus for a topic t, we identify all pro-
ducers and report their followers as the consumers of topic
t. The target set St is the collection of these users.

Our algorithms can be adopted by the social platform it-
self or any third-party that has access to or can infer produc-
ers or consumers of different topics (e.g., by utilizing posts’
contents, lists, groups, social connections, etc.). We empha-
size that the algorithms presented in this paper accept the
target sets as input. The method to identify target sets is or-
thogonal to our work and our algorithms work well without
any modification utilizing any approach preferred to com-
pute target sets.

5. EXPERIMENTS
We conduct a comprehensive set of performance and qual-

ity experiments using realistic, large scale datasets derived
from Twitter. We first describe our dataset in Section 5.1,
followed by quantitative results on the run time, coverage,
and cost of all proposed algorithms in Section 5.2; qualita-
tive results of their output are discussed in Section 5.3.

5.1 Experimental Setup
Hardware and Platform: The algorithms were coded in
Java and evaluated on a quad core 2.4 GHz computer (AMD
Opteron

TM
Processor 850) with 100 GB on memory running

CentOS 5.5 with kernel version 2.6.18-194.11.1.el5. All al-
gorithms are single-threaded.
Topics and Users : Recall that the major input to our prob-
lem is a set of topics and the target sets. Other relevant pa-
rameters include the expected bidding costs for each of the
topics and a penalty function that determines the penalty cost

of unwanted targeting.
For the case of Twitter, utilizing the standard APIs, we

collected all Twitter lists and the users belonging to these
lists. As described in Section 4, list names are adopted to
identify topics. We collected a set of approximately 4.5 mil-
lion topics and their target sets (for the case of our experi-
ments, users that are producers of the topics as explained in
Section 4). Overall, the total number of users in these tar-
get sets is 150 million of which about 13.5 million accounts
are distinct. On average, each user is in the target set of 11
topics.
Cost Model for Topics: While collecting users and topics
was relatively straightforward, identifying the costs was not.
Most companies including Twitter do not reveal the bidding
costs for their topics. Hence we adopt a diverse set of analyt-
ical but realistic cost models to estimate the cost of a topic.
At a high level, our cost models can be partitioned into those
that are independent of the target set size and those that are
dependent on it.

For the former case, we generated costs for topics based
on uniform and normal distributions. In both cases, the av-
erage (which is representative) is 1000. We evaluated two
normal distributions with low and high variance (with stan-
dard deviation being 10 and 100 respectively). Naturally, the
latter results in a higher variance of costs.

An alternate approach is to model the cost in a way that
is dependent on the target set size. In other words, topics
that are generic and have a large target set have a higher
cost. Another rationale is that in reality we expect that top-
ics that are related will have lots of common users and hence
will have similar target set size (and cost). Our last cost
model captures this behavior. For this purpose we gener-
ated costs based on a power law (size of target sets for dif-
ferent topics follows a power law) cost model, defined as√
target− set− size ∗ uniform(0, 1).
Hereafter we refer to these cost models as uniform, nor-

mal low, normal high, and power law. In all experiments ex-
cept those reported in Figure 4, the budget is set to $10000.
Penalty Function: We study two cases a) the penalty for any
instance of unwanted targeting (covering a user outside St)
is 0, and b) it is not. We studied three intuitive penalty func-
tions. First a linear penalty function that assigns a penalty as
ax where a is a constant (10 cents in our experiments except
Figure 5) and x is the number of times the user was incor-
rectly targeted. Second is the polynomial cost function that
assigns penalty as xa where the parameters are as defined
above. We also evaluated our algorithm on exponential cost
functions according to ax.
Performance Measures: There are multiple relevant met-
rics that could be used to evaluate our algorithms. The first
is runtime performance which measures the time it takes to
run our targeting algorithm. The second is the coverage,
namely, how many users in the target set of t (the original
query) are present in the target set of the alternative topic set
R. Since our objective is to replace an expensive topic with
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(b) Coverage with penalty

Figure 1: Comparison of our algorithms with baseline
algorithms with and without penalty
multiple others relatively inexpensive ones, this is a crucial
metric. Third is the bidding cost of the alternative topic setR
(i.e. CR). We would also like to reduce our penalty cost by
minimizing the number of instances of unwanted targeting
that are caused by our alternate topic set (C ′R). We evalu-
ate pruning algorithms using measures introduced above. A
good pruning heuristic significantly reduces the running time
without incurring loss of alternate topics. Experiments are
performed on several original topics. The results are consis-
tent with those presented below. In this section, due to space
limitations, we report the results of the experiments done for
the original topic of social media which has a target set
of approximately 160,000 users. In all experiments except
Figure 4 that evaluates the behavior of algorithms versus the
budget, the budget is set to 10000. Loading target sets in
memory and conducting pruning require, respectively, 7 and
1 minute.
Algorithms Evaluated: In this section, we evaluate two
major algorithms that trade-off approximation bounds for
speed: algorithms TG and TG3. In addition, both algorithms
are affected by penalty function and we evaluated both sce-
narios with zero (TG-NP and TG3-NP where NP means no
penalty) and non-zero penalty cost (TG and TG3). We com-
pare these algorithms with baseline algorithms (Random, Top-
k, WordNet) and demonstrate that the proposed algorithms
outperform the baselines. We also evaluate two pruning strate-
gies - CP which is based on coverage while RP which is
based on the ratio of coverage to cost.

5.2 Performance Analysis
Comparison with baseline algorithms: We start by com-
paring our algorithms TG and TG3 with 3 baseline algo-
rithms:
Random: Randomly pick topics until the budget is exhausted.
Repeat this process for 10 times and pick the best.
Top-k: Order candidate topics based on their coverage. Pick
topics in this order until the budget is exhausted.
WordNet: Given a query, do basic stemming, perform syn-
onym expansion using Lucene-WordNet index and order re-
sults based on similarity. Pick topics in this order until the
budget is exhausted.

Figure 1 reports the normalized coverage of the alternative
topic sets identified by different algorithms when a CP prun-
ing technique is utilized with a pruning fraction of 0.5. The
normalized coverage of a topic set S with respect to a query
topic t is the fraction of users in the target set of t that is tar-

geted by S. The results for other pruning fraction values are
consistent with those in Figure 1. Figure 1(a) displays the
results when the penalty for any unwanted targeting is zero;
Figure 1(b) depicts the results adopting a linear penalty func-
tion. We observe that in both cases our algorithms TG and
TG3 significantly outperform all baseline algorithms. While
the baseline algorithms have normalized coverage values of
7%, 20%, and 21% in average, our algorithms result in nor-
malized coverage values of up to 80%.
Impact of pruning fraction on run time, cost, and cov-
erage: To evaluate the impact of different parameters on
our proposed algorithms, we start with an experiment that
demonstrates how beneficial pruning techniques are. We
study how the behavior of our algorithms change, in the
presence of different cost models as the pruning fraction
varies. The first column of diagrams in Figure 2 (i.e., 2(a),
2(e), and 2(i)) depicts the algorithms’ behavior when a uni-
form cost model is utilized. The second and third columns,
respectively, relate to normal low and normal high cost mod-
els. Finally, the last column corresponds to the power law
cost model. We decided to run experiments not taking more
than a few hours (that occurs for pruning fractions above
0.3). Figure 2 represents the performance of CP with the
pruning fraction varied from 0.3 to 0.5 (all algorithms fol-
low a similar trend above 0.5); we measure the run time,
coverage, and cost for all algorithms.

Figures 2(a) to 2(d) depict how the run time of the al-
gorithms significantly decreases as pruning increases (from
10 hours with a pruning fraction of 0.3 to 7 minutes with a
pruning fraction of 0.5). Our experiments show that algo-
rithm TG for both scenarios - penalty of 0 and non zero -
runs much faster than TG3. We also observe that this behav-
ior is consistent across different cost models.

Figures 2(e) to 2(h) show the effect of pruning fraction to
coverage. A higher pruning fraction has a dampening effect
on coverage as potential alternate topics could be missed.
However, the figures show the efficacy of CP in culling the
irrelevant target sets as the overall coverage has only a minor
drop (less than 6% on average) between pruning fractions of
0.3 and 0.5. Experiments show that when the penalty func-
tion is zero (TG-NP and TG3-NP), the coverage is higher
(up to 75% of the target set of the original topic) as the algo-
rithms could focus on identifying targets with only the bud-
get constraint.

Figures 2(i) to 2(l) show how the total cost (CR + C ′R)
varies with the pruning fraction. In general, an aggressive
pruning strategy actually reduces cost by removing all topics
that are either irrelevant or not cost effective.

Our evaluations suggest that pruning significantly decreases
the run time of the algorithms and the final cost while the
coverage remains almost constant.
Comparative analysis of pruning techniques: While the
previous experiments establish that pruning techniques are
effective in general, CP and RP offer different trade-offs. We
perform experiments utilizing all 4 different cost models that
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Figure 2: Impact of pruning fraction over time, coverage, and cost on different cost models
highlight and contrast the differing approaches.

CP and RP behave very similarly on normal low and nor-
mal high cost models. However, they depict differences on
the uniform and power law cost models. The reason is that
in the normal distribution, the variance of costs is smaller
than uniform and power law distributions and the costs of
different topics are very similar. Hence when the coverage
of a topic is greater than another topic, most of the times
its coverage to cost ratio, in the normal cost models, is also
greater and vice versa. Therefore, both CP and RP prune
similar topics, and thus the behavior of these techniques in
terms of run time, coverage, and cost are similar. In the pres-
ence of uniform and power law distributions, however, as the
costs associated to topics are more diverse, CP and RP show
differences detailed below.

Figure 3 displays the results for the uniform cost model.
Figure 3(a) shows how the coverage changes for different
pruning fractions utilizing CP and RP for algorithm TG-NP.
Figure 3(b) corresponds to the same experiment for TG. The
results follow the same trend for TG3-NP and TG3. These
figures display a possibly counter intuitive behavior: a wide
difference between the coverage of CP and RP for high prun-
ing fractions. For example, in Figure 3(a) when the pruning
fraction is 0.5, CP has a coverage of close to 100K while
RP is abysmally low. However, the relative performance im-

proves as the pruning fraction reduces. Both techniques re-
sult in comparable high coverage values when a low pruning
fraction (0.01) is utilized.

In order to explain this recall that CP is a coverage based
technique that prunes topics with low coverage. In contrast,
RP is a ratio based technique that drops topics that have a
low coverage to cost value. When the cost of a topic is inde-
pendent of size, CP removes low coverage topics even if they
are quite cheap. For example, if a topic has 10 new users but
only costs a cent, CP might still ignore it while RP might
retain it. This behavior is exacerbated for high pruning frac-
tions. Figure 3(c) depicts this behavior in more detail. The
alternative topics that RP chose, when a high pruning frac-
tion is utilized, have an incredibly high coverage to cost ratio
of 3000 while that of CP is not significant. This high cov-
erage to cost ratio results in significant cost savings for the
advertiser. As Figure 3(d) shows RP saves money for adver-
tisers by significantly minimizing the bidding cost.

These sets of experiments clearly show the trade-offs made
by CP and RP. If the objective is to maximize the coverage
then the best choice is CP. However, if the objective is to also
maximize the cost-benefit ratio of the campaign, then RP is
the technique of choice. While it might reach a potentially
smaller audience, the cost per user reached is significantly
smaller compared to CP.
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Figure 3: Comparative analysis of pruning techniques

We also evaluated our algorithms over a power law based
cost model. The behavior of both the pruning algorithms
were very similar to that of the uniform cost model and hence
we did not include these charts to conserve space. We also
observed that RP runs much faster than CP for uniform and
power law cost models. For example with a pruning frac-
tion of 0.01 on the uniform cost model, it takes about 50000
seconds to run TG-NP with CP while it takes about 5000
seconds to run it with RP, a substantial speedup.
Impact of budget over time, cost, and coverage: We test
how budget impacts the run time, cost, and coverage of the
alternative topic set R. Figure 4 shows the results. As ex-
pected, as the budget increases, it is possible to afford a
larger alternative topic set which in turn increases the run
time, cost, and coverage. As the budget increases, the run-
ning time of the algorithms increases as they have to run
additional iterations to choose more alternative topics (Fig-
ure 4(a)). The total cost also increases linearly, according to
Figure 4(c), with budget increases. These changes are lin-
ear as the algorithms could utilize all the budget to cover
more users. Note that since our algorithms choose topics
with higher coverage to cost ratio in the first iterations, as
we proceed we cover less and less new users by paying more
and more, that explains the concave shape of coverage in
Figure 4(b).
Impact of penalty cost over time, cost and coverage: We
also evaluate how the different penalty cost models affect
the outcome of algorithms. We start with a linear penalty
cost function f(xu) = a × xu for a non-negative constant
a where xu is the number of times user u is targeted by dif-
ferent topics. The results are provided in Figures 5(a)-5(c).
When the cost of incorrect targeting (parameter a) increases,
the algorithms become “risk-averse” and try to choose only
topics that are very similar to the query topic and the size of
the alternative topic set R would be smaller. This results in
a drop in run time, coverage, and bidding cost CR and an in-
crease in penalty cost C ′R. We also evaluated our algorithms
for other cost functions such as polynomial and exponential
cost functions f(x) = xa and f(x) = ax. We found the
behavior to be similar to the linear function except the fact
that the drop rate in run time, coverage, and bidding cost is
much sharper.
Impact of alternative topic set size on coverage and cost:
We also aim to understand how total coverage and cost changes

when the algorithms add more topics in subsequent itera-
tions to the alternative topic set R. We evaluate this exper-
iment utilizing different pruning fractions. Figure 6 details
this behavior. As we add more topics, coverage follows a
concave shape while the total cost of this set increases fol-
lowing a convex behavior. This is expected since in later
iterations the algorithms add topics with lower coverage to
cost ratio. Further, we can observe that as the pruning frac-
tion decreases, the size of target set increases (from a size
of 6 for a pruning fraction 0.5 to a size of 11 for a pruning
fraction 0.3) thereby increasing both the cost and coverage.
Intuitively, a less aggressive pruning strategy results in more
topics that are not necessarily cost or coverage optimal.
Impact of approximation ratio α on run time: Recall that
one of the techniques to achieve speed up is to perform ap-
proximate calculations using algorithm APXCAL. We eval-
uate how the approximation ratio α in the APXCAL algo-
rithm affects the run time, coverage, and cost. The value
of α varies between 0 and 1 with higher values implying a
higher precision. Figure 7 presents the results of an exper-
iment when we vary α. Our experiments show that cover-
age and cost remain unchanged when α varies from 0.2 to 1
while the run time increases. For example, the run time of
algorithm TG3-NP when α = 1 is twice as much as the run
time when α = 0.2 (20000 seconds for α = 1 compared to
10000 seconds for α = 0.2). We speedup the algorithms by
choosing lower values of α without sacrificing coverage.
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Figure 7: Impact of approximation ratio α on run time
5.3 Qualitative Results

In this section, we show that the output of our algorithms
are quite realistic using three sample keywords. For this pur-
pose, we choose three diverse keywords - social media,
fashion and machine learning. Table 1 shows the
alternate topics identified by our algorithms. We can see that
the topics are intuitively similar to the original topic and ex-
pected to have users of related expertise. For example, our
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Figure 4: Impact of budget over time, cost, and coverage
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Figure 5: Impact of linear penalty cost over time, coverage, and bidding cost

Table 1: Case Study of Alternate Topics (the words are
stemmed)

Machine Learning Fashion Social Media
strata beauti fash-

ion
market pr

machinelearn(ing) fashion peopl socialmedia
ai style fashion communiti
info engin(e) fashion blog seo
ai ppl shoe blog
researchnew fashion

world
onlin(e) mar-
ket

nosql apparel
nlp ml stylist
inform(ation) retriev(al) fashion brand
analytics research data
dev
data analyt(ics)
aier
fourtytwo
data scientist

algorithms identify that users who produces content in topics
such as strata (a data analysis language), ai, ml, etc. are
also producing content in the topic machine learning.
Also, topics such as apparel, shoe, fashion blog
are good proxies if you wish to target producers in Fashion.
Moreover, topics such as online market, seo, blog
target similar users as social media.

6. RELATED WORKS
Social based analytics: Many works have been done on

micro-blogging platforms in recent years. Sankaranarayanan
et al [29] use these platforms to identify breaking news as
well as to consume news [22]. Micro-blogging platforms

have also been used to monitor trends with novel applica-
tions such as predicting stock prices [28]. They have also
been used to detect communities based on interests [18] or
bursts [15] and to rank users based on their influence [32]
within their community or based on their topical expertise
[26]. Behavior of users on the social platforms and commu-
nities has also been studied [1, 24].

Advertising: Twitter has joined the likes of Google and
Facebook to start an online advertising platform [30]. Re-
cent research has shown that Twitter users respond favorably
to advertising [8]. Broadly, existing work on social networks
have studied three different types of advertising. The first is
behavioral targeting [2, 34] where the aim is to show rele-
vant advertisements based on user behavior over a given site
or over a set of mutually co-ordinating sites. The second is
influence based [4, 9, 23, 33] advertising. In this approach,
the aim is to identify influential users whose tweets or posts
serve as an endorsement influencing his/her followers to in-
dulge in an activity. The final type of advertisement is topic
based [10, 16, 21, 27, 32]. In this approach, advertisers bid
on a topic and a promoted tweet is shown to users who are
interested in the topic. In this paper, we focused on such an
approach as it is closer to the Twitter advertising platform.

Set, Max and Budgeted Coverage Problems: From a
theoretical perspective, our solutions are akin to the set cover
and its variants - Max-Cover and Budgeted Set cover all
of which have been proven to be NP-Complete [25]. Re-
fer to [31] for a discussion on efficient approximation al-
gorithms for set cover. Khuller et al., [20] proposed two ap-
proximation algorithms for the budgeted maximum coverage
problem. We adopt these algorithms as a basis towards de-
signing algorithms to address Problem 1. The online variant
of set cover has been studied in [3] while [12] studied adop-
tions of the approximation algorithm for set cover to very
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Figure 6: Impact of topic set size on coverage and cost for different pruning fractions
large datasets. Bonchi et. al. [5] studied decompositions of
a single query to a small set of queries whose result union
approximates the original query result.

Finding Covers Efficiently: Many important problems
could be formulated as a coverage problem and hence there
has been tremendous amount of prior work to identify cov-
ers efficiently by designing efficient set representations or by
faster algorithms for set union and intersection operations.
Efficient set representations include inverted indexes, hier-
archical representations such as balanced trees, treaps and
skip-lists [11]. Sets can also be represented by probabilistic
data structures such as Bloom filters [6]. Using bloom filters
might result in a slight reduction in covered items but com-
bined with pruning techniques, the impact would be mini-
mal.

Algorithms for efficient set operations operate over the
preprocessed sets and can be typically categorized as adap-
tive [13], hashing based [6] and score based [7]. There ex-
ist a number of efficient algorithms to find covers in main
memory efficiently that exploits number of properties such
as asymmetry of set sizes, parallel scans, etc. Very few work
tackle the problem of identifying covers in external mem-
ory, [12] being an exception. The DFG algorithm in [12]
could be adapted to implement the third primitive efficiently.
See [14] for an extensive related work on efficient set opera-
tions. Our algorithms are oblivious to the set representation
and any of the algorithms from the related work could be
used to achieve dramatic performance improvements for set
union and intersections. We consider this aspect of research
to be orthogonal to our work as ideas from the aforemen-
tioned papers could readily be used to increase the efficiency
of our algorithms.

7. CONCLUSION
In this paper, we initiate a study into a targeting problem

in social media advertising. We introduced a taxonomy of
relevant parameters (such as cost and penalty function) and
studied the feasibility of our problem for various scenarios.
We show that the problem is NP-hard, and propose two ap-
proximation algorithms. Further we propose two comple-
mentary pruning techniques and an algorithm to do approxi-
mate calculations to speedup the algorithms; we also studied
their impact on the approximation bounds. Finally, we con-
duct a comprehensive set of experiments that demonstrate

the efficacy of our algorithms and the quality of the results.
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APPENDIX
A. THE PROOF OF THE APPROXIMATION

BOUND FOR ALGORITHM TG
LetWq be the coverage of topic q, andWA is the coverage

of setA (i.e.,WA = |(
⋃
q∈A

Sq)∩St|). Consider the following

Lemma that holds for both algorithms TG and TG3 and is
utilized in several places in this paper.

LEMMA 2. Suppose MW i
q (MCiq) is the marginal cov-

erage (the marginal cost) of topic q ∈ T at iteration i of

algorithm TG or TG3. For any j > i,
MW i

q

MCi
q
≥ MW j

q

MCj
q

.

PROOF. Coverage is a submodular function that means
inserting a topic q to a set A results in a bigger or an equiv-
alent marginal increase than inserting the same topic q to a
superset B of A; i.e., for any set A ⊆ B:

WA∪{q} −WA ≥WB∪{q} −WB (1)

Assume Ri is the alternative topic set identified by TG (or
TG3) at iteration i. Then for any j > i

Ri ⊆ Rj (2)

Utilizing Equations 1 and 2, we conclude that

MW i
q =WRi∪{q} −WRi ≥WRj∪{q} −WRj =MW j

q

On the other hand, MCiq = (CRi∪{q} + C ′Ri∪{q}) −

(CRi+C ′Ri) = Cq+C
′
Ri∪{q}−C

′
Ri = Cq+

∑
u∈Sq−St

(f(x 2
u )−

f(x 1
u ))

where t is the original topic, f is the penalty cost function,
x 1
u is the number of times u is targeted by topics in Ri, and

x 2
u is the number of times u is targeted by topics inRi∪{q}.

Assume x′ 1u and x′ 2u are, respectively, the number of times
u is targeted by topics in Rj and Rj ∪ {q}. Since Ri ⊆ Rj :
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x 1
u ≤ x′ 1u . Since f is a non-decreasing convex function:

f(x′ 2u )− f(x′ 1u ) ≥ f(x 2
u )− f(x 1

u )

Thus, MCiq = Cq +
∑

u∈Sq−St

(f(x 2
u ) − f(x 1

u )) ≤ Cq +∑
u∈Sq−St

(f(x′ 1u ) − f(x′ 1u )) = MCjq . Therefore, MW i
q ≥

MW j
q and MCiq ≤ MCjq . In conclusion, for any j > i,

MW i
q

MCi
q
≥ MW j

q

MCj
q

Let O represent the optimal alternative topic set and R
represent the alternative topic set identified by TG (or TG
and APXCAL). Moreover let qi be the ith topic added to
R by TG, Ri contain the first i topics added to R (Ri =
{q1, ..., qi}), and MCqi be the marginal cost qi adds, at the
iteration it is added to R. Assume iteration l + 1 is the first
iteration in which a topic from O (say topic h) is considered
by TG but it is not added to R because the total cost exceeds
the budget. We assume that in the first l iterations, d topics
are added to R. Hence after iteration l, R = Rd. Assume
Rd+1 = Rd ∪ {h}. Lemmas 3 and 4 and the discussions
following them are a generalization of the discussions on the
unit cost and fixed cost versions of the problem presented
in [17] and [20].

LEMMA 3. Utilizing TG (Section 2.1) and APXCAL with
an approximation parameter α (Section 3.2), for any 1 ≤
i ≤ d+ 1, the following equation holds:

WRi
≥ (1−

i∏
j=1

(1−
αMCqj
B

))WO

Clearly we can set α = 1 to consider the case that TG is
utilized without APXCAL.

PROOF. First, we calculate the difference between WO

andWRi
for any 1 ≤ i ≤ d: WO−WRi

≤WO∪Ri
−WRi

≤∑
q∈O−Ri

(WRi∪{q}−WRi
).1 Since TG (or TG and APXCAL)

chooses qi+1 at iteration i+ 1, for all topics in O −Ri:

α
WRi∪{q} −WRi

Cq + C ′Ri∪{q} − C
′
Ri

≤
MWqi+1

MCqi+1

(3)

Therefore,WO−WRi
≤ MWqi+1

αMCqi+1

∑
q∈O−Ri

(Cq+C
′
Ri∪{q}−

C ′Ri
). Note that

∑
q∈O−Ri

(Cq + C ′Ri∪{q} − C ′Ri
) ≤ CO +

C ′O ≤ B. Hence,WO−WRi
≤ WRi+1

−WRi

αMCqi+1
B that is equiv-

alent to:

(WO −WRi
)
αMCqi+1

B
≤ (WRi+1

−WRi
) (4)

Utilizing Equation 4, we can conclude Lemma 3 by in-
duction. The basis is straightforward. Assuming the state-
ment for iterations R1 to Ri−1, we show it for Ri. WRi

=
1The marginal coverage of each topic q is higher at iteration i + 1
than any later iteration, according to Lemma 2.

WRi−1−(WRi−WRi−1) ≥WRi−1+(WO−WRi−1)
αMCqi

B ≥
(1−

∏i
j=1(1−

αMCqj

B ))WO.

The proof of Theorems 1 and 7 follows. If there exists a
topic q such that Wq ≥ WO/2, then TG reports q or some
set with higher coverage hence the theorem follows. Else,
for all topics the coverage is less than WO/2. Consider two
cases:

• CR+C ′R < B/2: For all topics q 6∈ R, Cq+C ′{q}∪R−
C ′R > B/2; hence O − R contains at most one topic q
and according to our assumption Wq < WO/2. Thus,
WO −WR < WO/2⇒WR > WO/2.

• CR + C ′R ≥ B/2: Utilizing Lemma 3, we get

WRd
≥ (1 −

∏d
j=1(1 −

αMCqj

B ))WO ≥ (1 − (1 −
α
2d )

d)WO ≥ (1 − 1/
√
eα)WO. Note that in these in-

equalities we utilize the facts that
d∑
j=1

MCqj = CRd
+

C ′Rd
, and the fact that this expression achieves its min-

imum value when all MCqj values are equal.

B. THE PROOF OF THE APPROXIMATION
BOUND FOR ALGORITHM TG3

LetO be the optimal solution, R be the solution identified
by TG3 (TG3 and APXCAL), and Ri is the alternative topic
set after iteration i. If the number of topics in O is 3 or
less, TG3 identifies the optimal solution. Hence, we assume
|O| > 3. Order the topics in O non-decreasingly according
to their marginal coverage and name them q1, q2, · · · . Let
Q = {q1, q2, q3}. Consider the iteration in TG3 that expands
Q.

Similar to the discussions in Section A, assume h is the
first topic belonging to O that is considered by TG3 but not
added to the solution due to budget constraints. Moreover,
assume h is evaluated in iteration d + 1 and let Rd+1 =
Rd ∪ {h}. Also let W̃X be the number of users targeted by
X but not targeted by Q. The following lemma holds.

LEMMA 4. Utilizing TG3 (Section 2.2) and APXCAL with
an approximation parameter α (Section 3.2):

W̃Rd−Q +MWh ≥ (1− 1/eα)W̃O−Q

PROOF. Note that the process of expanding Q to the final
solution by TG3 can be considered as an application of TG.
Utilizing Lemma 3, we conclude that WR̃d+1−Q ≥ (1 −∏d+1
j=1(1−

αMCqj

B ))W̃O−Q ≥ (1−(1− α
d+1 )

d+1)W̃O−Q
2 ≥

(1− 1/eα)W̃O−Q. Thus, W̃Rd+1−Q = W̃Rd−Q +MWh ≥
(1− 1/eα)W̃O−Q.
2Here we utilize the facts that CRd+1 + C′

Rd+1
≥ B (recall that

Rd+1 exceeds the budget),
d+1∑
j=1

MCqj = CRd+1 + C′
Rd+1

, and

the fact that this expression achieves its minimum value when all
MCqj values are equal.
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Also, MWh ≤ MWq3 ≤ MWq2 ≤ MWq1 (recall that
the topics in O are ordered) that means MWh ≤ 1/3WQ.
Therefore: WR ≥WQ+W̃Rd−Q ≥WQ+(1−1/eα)W̃O−Q−
1/3WQ ≥ (1 − 1/eα)W̃O−Q + (1 − 1/3)WQ ≥ (1 −
1/eα)WO thus Theorems 3 and 8 follow.

Finally we show that Theorem 9 holds. Utilizing subsets
of 2 instead of 3, we get MWh ≤ 1/2WQ. Hence WR ≥
(1− 1/eα)W̃O−Q + (1− 1/2)WQ that is greater than (1−
1/eα)WO if α ≤ ln(2).

C. THE PROOF OF THE APPROXIMATION
BOUND FOR THE CP PRUNING TECH-
NIQUE

Let T be the full set of topics and T̂ be the set of top-
ics after applying the CP pruning technique. Let O be the
optimal alternative topic set, R be the alternative topic set
identified by TG (TG3) utilizing the set T as the full topic
set, and R̂ be the alternative topic set identified by TG (TG3)
utilizing the set T̂ as the full topic set. Moreover, assume θ
is the pruning fraction in the CP technique, and Wmax is the
maximum weight among all topics in T .

C.1 CP with TG
Consider the set R and R̂. Assume iteration i∗ + 1 is the

first iteration in that the algorithm inserts different topics in
R and R̂. Let topic t∗ be the topic inserted to R at iteration
i∗ + 1, and Ri

∗
be the set R or R̂ at the end of iteration i∗

(recall that both of these sets are equivalent before iteration
i∗ + 1).

LEMMA 5. Topic t∗ is in T − T̂ .

PROOF. Assume q∗ 6= t∗ is the topic (can be null) that is
added to R̂ at iteration i∗ + 1. There are 2 reasons that t∗

is not selected by TG to be added to R̂. Either t∗ 6∈ T̂ that
proves the theorem; or the marginal coverage to value for q∗

is higher than t∗. However, the fact that t∗ is added to R
in iteration i∗ + 1 shows that t∗ has the maximum value of
marginal coverage to cost among all topics in T − Ri∗ . i.e.,

for all topics q ∈ T−Ri∗ : t∗ = arg max
q∈T−Ri∗

W
Ri∗∪{q}−WRi∗

Cq+C′
Ri∗∪{q}

−C′
Ri∗

.

This results in a contradiction. Thus, t∗ ∈ T − T̂ .

For all topics q ∈ R− R̂:

WRi∗∪{q} −WRi∗

Cq + C ′
Ri∗∪{q} − C

′
Ri∗
≤

WRi∗∪{t∗} −WRi∗

Ct∗ + C ′
Ri∗∪{t∗} − C

′
Ri∗

(5)

Moreover since t∗ ∈ T − T̂ (Lemma 5), Wt∗ ≤ Wmaxθ.
Thus,

W
Ri∗∪{q}−WRi∗

Cq+C′
Ri∗∪{q}

−C′
Ri∗

(Ct∗+C
′
Ri∗∪{t∗}−C

′
Ri∗ ) ≤WRi∗∪{t∗}−

WRi∗ ≤Wt∗ ≤Wmaxθ. Therefore,

WRi∗∪{q} −WRi∗ ≤Wmaxθ
Cq + C ′

Ri∗∪{q} − C
′
Ri∗

Ct∗ + C ′
Ri∗∪{t∗} − C

′
Ri∗

Utilizing the aforementioned inequality, we compute an up-
per bound for the difference of the coverage between R and

R̂.
WR −WR̂ ≤

∑
q∈R−R̂

WRi∗∪{q} −WRi∗ ,

WR −WR̂ ≤Wmaxθ
∑

q∈R−R̂

Cq+C
′
Ri∗∪{q}

−C′
Ri∗

Ct∗+C
′
Ri∗∪{t∗}

−C′
Ri∗

.

Note that Ct∗ + C ′
Ri∗∪{t∗} − C

′
Ri∗ ≥ Ct∗ + C ′t∗ ≥ C̃min,

Wmax ≤ WR, and
∑

q∈R−R̂
Cq + C ′

Ri∗∪{q} − C ′
Ri∗ ≤ B.

Thus,

WR −WR̂ ≤WRθB/C̃min

and finally

WR̂ ≥WR(1− θ
B

C̃min
)

Recall that WR ≥ (1 − 1/
√
eα)WOPT in TG utilizing

the APXCAL technique, hence the CP technique provides a
(1−1/

√
eα)(1−θ B

C̃min
)-approximation factor when applied

together with TG and APXCAL.

C.2 CP with TG3
If O contains less than 3 topics, the difference between R

and R̂ would be less than JWmaxθ (the worst case happens
when all topics in O belong to pruned topics). Here, J is
the number of topics in O that is not more than B/C̃min.
Hence WR − WR̂ ≤ JWmaxθ ≤ JWRθ. Thus, WR̂ ≥
(1−Jθ)WR ≥ (1−B/C̃minθ)WR and the theorem follows.

Assume |O| > 3. We order the topics in O based on their
decreasing value of marginal coverage. LetA = {q1, q2, q3}
be the set containing the first three topics inO. HenceMWq1 ≥
MWq2 ≥ MWq3 ≥ MWq for any topic q ∈ O − A. Con-
sider the following two cases: (1) A ⊆ T̂ , and (2) A 6⊆ T̂ .

If A 6⊆ T̂ , then there exist a topic p ∈ T − T̂ such that
p ∈ A and Wp < θWmax. Since A contains three sets
with maximum marginal coverage, for any topic q ∈ O−A,
MWq ≤MWp ≤Wp ≤ θWmax. Thus, W (O)−W (R̂) ≤∑
q∈O−R̂

MWq ≤ JθWmax ≤ B/C̃minθWmax. Hence the

theorem follows.
If A ⊆ T̂ , consider the iteration in TG3 that starts with A.

Expanding set A to set R̂ can be considered as an instance
of utilizing TG to expand an empty set and all discussions in
Appendix C.1 holds. Hence the theorem follows.

D. THE PROOF OF THE APPROXIMATION
BOUND FOR THE RP PRUNING TECH-
NIQUE

D.1 RP with TG
Similar to the discussions in Section C, Lemma 5, and

Equation 5, t∗ ∈ T − T̂ , and for any topic q ∈ R − R̂,
W

Ri∗∪{q}−WRi∗

Cq+C′
Ri∗∪{q}

−C′
Ri∗
≤

W
Ri∗∪{t∗}−WRi∗

Ct∗+C
′
Ri∗∪{t∗}

−C′
Ri∗

. Note that for

pruned topics (topics in T − T̂ ) including t∗, the ratio of
initial coverage over bidding cost is less than rθ. Thus, the
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marginal increase in coverage over cost that each topic in
R− R̂ provides is not greater than the threshold for pruning
the topics (i.e., rθ). Let’s assume R− R̂ = {q1, q2, · · · , qi}.
Thus:
WR −WR̂ ≤Wq1 +Wq2 + ...+Wqi ≤ rθCq1 + rθCq2 +
...+ rθCqi ≤ rθ(Cq1 + ...+ Cqi) ≤ rθB

LetWr andCr, respectively, denote the coverage and cost
of the topic with the ratio Wr/Cr = r. The aforementioned
inequality can be written as:

WR −WR̂ ≤ θ
Wmax

Cr
B

Wr

Wmax

Note that WR ≥Wmax. Thus,

WR −WR̂ ≤ θ
WR

Cr
B

Wr

Wmax

Thus:

WR̂ ≥WR × (1− θ B
Cr

Wr

Wmax
)

D.2 RP with TG3
We order topics in O based on their values of coverage

over cost. First, assume |O| > 3. Let A contains the three
topics with the maximum values. Consider the iteration in
TG3 that starts with A. If A ⊆ T̂ , then expanding A to R̂ is
an application of utilizing TG on an empty set and a similar
discussion as Section D.1 concludes the theorem.

If A 6⊆ T̂ , we assume there exists a topic p ∈ A such
that p ∈ T − T̂ . Hence for any topic q ∈ O − A, Wq

Cq
≤

Wp

Cp
. Moreover as p is a pruned topic, Wp

Cp
< rθ. Thus,

WO−WR̂ ≤
∑

q∈O−R̂
Wq <

∑
q∈O−R̂

θrCq < θrB. Hence the

theorem follows in both cases.
If |Q| ≤ 3, then WO − WR̂ < rθ

∑
q∈O

Cq < rθB ;

the maximum difference happens when all topics in O are
among the pruned topics.
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